Question : What is the value of $\frac{0.74 \times 1.23 \times 0.13}{(0.37)^3+(0.41)^3-8(0.39)^3}$?
Option 1: $1$
Option 2: $-\frac{1}{3}$
Option 3: $\frac{1}{3}$
Option 4: $-1$
Correct Answer: $-\frac{1}{3}$
Solution : $\frac{0.74 \times 1.23 \times 0.13}{(0.37)^3+(0.41)^3-8(0.39)^3}$ $=\frac{0.74 \times 1.23 \times 0.13}{(0.37)^3+(0.41)^3-(0.78)^3}$ We know the identity, If $a+b+c=0$ then $a^3+b^3+c^3=3abc$ Here, $(0.37 + 0.41 - 0.78) = 0 ⇒ (0.37)^3+(0.41)^3-(0.78)^3=-3\times 0.37\times 0.41\times 0.78$ So, $\frac{0.74 \times 1.23 \times 0.13}{(0.37)^3+(0.41)^3-(0.78)^3}$ $=\frac{0.74 \times 1.23 \times 0.13}{-3\times 0.37\times 0.41\times 0.78}$ $=-\frac{1}{3}$ Hence, the correct answer is $-\frac{1}{3}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{5-2 \div 4 \times[5-(3-4)]+5 \times 4 \div 2 \text { of } 4}{4+4 \div 8 \text { of } 2 \times(8-5) \times 2 \div 3-8 \div 2 \text { of } 8}$ is:
Question : The value of $8-3 \div 6$ of $2+\left(4 \div 4\right.$ of $\left.\frac{1}{4}\right) \div 8+\left(4 \times 8 \div \frac{1}{4}\right) \times \frac{1}{8}$ is:
Question : The value of $1-3 \div 6$ of $2+\left(4 \div 4\right.$ of $\left.\frac{1}{4}\right) \div 8+\left(4 \times 8 \div \frac{1}{4}\right) \times \frac{1}{8}$ is:
Question : What is the simplified value of $\left(1-\frac{1}{4-\frac{2}{1+\frac{1}{\frac{1}{3}+2}}}\right) \times \frac{15}{16} \div \frac{2}{3}$ of $2 \frac{1}{4}-\frac{3+4}{3^3+4^3}$
Question : What is the simplified value of: $7 \frac{1}{3} \div 2 \frac{1}{2}$ of $1 \frac{3}{5}-\left(\frac{3}{8}+\frac{1}{7} \times 1 \frac{3}{4}\right)-\frac{5}{24}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile