Question : What is the value of $\frac{(0.5)^{3}-(0.1)^{3}}{(0.5)^{2}+0.5\times 0.1+(0.1)^{2}}$?
Option 1: $0.1$
Option 2: $0.4$
Option 3: $0.5$
Option 4: $0.6$
Correct Answer: $0.4$
Solution : Given: $\frac{(0.5)^{3}-(0.1)^{3}}{(0.5)^{2}+0.5\times 0.1+(0.1)^{2}}$ By using the identity: $a^3-b^3=(a-b)(a^2+ab+b^2)$, the above expression can be written as: $\frac{(0.5-0.1)(0.5^{2}+0.5\times 0.1+0.1^{2})}{(0.5)^{2}+0.5\times 0.1+(0.1)^{2}}$ = $0.5-0.1$ = $0.4$ Hence, the correct answer is $0.4$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : What is the value of $\small \frac{(0.7)^{3}-(0.4)^{3}}{(0.7)^{2}+0.7\times 0.4+(0.4)^{2}}$?
Question : The value of the following expression $\frac{0.2×0.02×0.002×32}{0.4×0.04×0.004×16}$ is:
Question : The value of $\frac{0.325 \times 0.325+0.175 \times 0.175+25 \times 0.00455}{5 \times 0.0065 \times 3.25-7 \times 0.175 \times 0.025}+\frac{0.5}{1.5}$ is:
Question : The value of $\frac{0.325 \times 0.325+0.175 \times 0.175+25 \times 0.00455}{5 \times 0.0065 \times 3.25-7 \times 0.175 \times 0.025}-\frac{0.5}{1.5}$ is:
Question : If $\sqrt{0.04\times 0.4\times a}=0.004\times 0.4\times \sqrt{b},$ then the value of $\frac{a}{b}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile