12 Views
Question : What is the value of $\frac{x^2-x-6}{x^2+x-12}÷\frac{x^2+5x+6}{x^2+7x+12}$?
Option 1: $1$
Option 2: $\frac{(x-3)}{(x+3)}$
Option 3: $\frac{(x+4)}{(x-3)}$
Option 4: $\frac{(x-3)}{(x+4)}$
Answer (1)
Correct Answer: $1$
Solution :
Given: $\frac{x^2-x-6}{x^2+x-12}÷\frac{x^2+5x+6}{x^2+7x+12}$
= $\frac{(x-3)(x+2)}{(x+4)(x-3)}÷\frac{(x+3)(x+2)}{(x+4)(x+3)}$
= $\frac{(x-3)(x+2)}{(x+4)(x-3)}×\frac{(x+4)(x+3)}{(x+3)(x+2)}$
= $1$
Hence, the correct answer is $1$.
Know More About
Related Questions
TOEFL ® Registrations 2025
Apply
Accepted by 13,000 universities worldwide | Offered in 200+ countries | 40 million people have taken TOEFL Test
Upcoming Exams
Preliminary Exam
Exam Date:
25 May, 2025
- 25 May, 2025
Admit Card Date:
9 Jun, 2025
- 30 Jun, 2025
Application Date:
16 Jun, 2025
- 7 Jul, 2025
Application Date:
30 Jun, 2025
- 21 Jul, 2025
Exam Date:
20 Jul, 2025
- 20 Jul, 2025