Question : What is the value of $\operatorname{cos}\left(-\frac{17 \pi}{3}\right)$?
Option 1: $1$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\frac{1}{2}$
Option 4: $0$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{2}$
Solution : $\operatorname{cos}\left(-\frac{17 \pi}{3}\right)$ $=\operatorname{cos}\left(\frac{17 \pi}{3}\right)$ $=\operatorname{cos}\left(\frac{17\times 180º}{3}\right)$ $=\operatorname{cos}\left(17\times 60º\right)$ $=\operatorname{cos}\left(1020º\right)$ $=\operatorname{cos}\left(90º\times 11+30º\right)$ $=\operatorname{sin}\left(30º\right)$ $=\frac{1}{2}$ Hence, the correct answer is $\frac{1}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Simplify the following: $\frac{\cos x-\sqrt{3} \sin x}{2}$
Question : $\cos \left(30^{\circ}+\theta\right)-\sin \left(60^{\circ}-\theta\right)=$ _____________.
Question : If $\cos \left(2 \theta+54^{\circ}\right)=\sin \theta, 0^{\circ}<\left(2 \theta+54^{\circ}\right)<90^{\circ}$, then what is the value of $\frac{1}{\tan 5 \theta+\operatorname{cosec} \frac{5 \theta}{2}}$?
Question : If $\sin \theta-\cos \theta=0$, then find the value of $\left(\sin^3 \theta-\cos^3 \theta\right)$.
Question : If $\sec x- \cos x$ = 4, then what will be the value of $\frac{\left(1+\cos ^2x\right)}{\cos x}?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile