Question : What is the value of $\left(k-\frac{1}{k}\right)\left(k^2+\frac{1}{k^2}\right)\left(k^4+\frac{1}{k^4}\right)\left(k^8+\frac{1}{k^8}\right)\left(k^{16}+\frac{1}{k^{16}}\right) ?$
Option 1: $k^{64}-\frac{1}{k^{64}}$
Option 2: $\frac{k^{32}-\frac{1}{k^{32}}}{k-\frac{1}{k}}$
Option 3: $k^{32}-\frac{1}{k^{32}}$
Option 4: $\frac{k^{32}-\frac{1}{k^{32}}}{k+\frac{1}{k}}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{k^{32}-\frac{1}{k^{32}}}{k+\frac{1}{k}}$
Solution : Consider, $\left(k-\frac{1}{k}\right)\left(k^2+\frac{1}{k^2}\right)\left(k^4+\frac{1}{k^4}\right)\left(k^8+\frac{1}{k^8}\right)\left(k^{16}+\frac{1}{k^{16}}\right)$ Multiplying and dividing by $(k+\frac{1}{k})$ ⇒ $\left(k-\frac{1}{k}\right)\left(k^2+\frac{1}{k^2}\right)\left(k^4+\frac{1}{k^4}\right)\left(k^8+\frac{1}{k^8}\right)\left(k^{16}+\frac{1}{k^{16}}\right)=\frac{(k-\frac{1}{k})(k+\frac{1}{k})(k^2+\frac{1}{k^2})(k^4+\frac{1}{k^4})(k^8+\frac{1}{k^8})(k^{16}+\frac{1}{k^{16}})}{k+\frac{1}{k}}$ Now using, $(a+b)(a-b)=a^2 - b^2$ ⇒ $\left(k-\frac{1}{k}\right)\left(k^2+\frac{1}{k^2}\right)\left(k^4+\frac{1}{k^4}\right)\left(k^8+\frac{1}{k^8}\right)\left(k^{16}+\frac{1}{k^{16}}\right)=\frac{(k^2-\frac{1}{k^2})(k^2+\frac{1}{k^2})(k^4+\frac{1}{k^4})(k^8+\frac{1}{k^8})(k^{16}+\frac{1}{k^{16}})}{k+\frac{1}{k}}$ $=\frac{(k^4-\frac{1}{k^4})(k^4+\frac{1}{k^4})(k^8+\frac{1}{k^8})(k^{16}+\frac{1}{k^{16}})}{k+\frac{1}{k}}$ $=\frac{(k^8-\frac{1}{k^8})(k^8+\frac{1}{k^8})(k^{16} + \frac{1}{k^{16}})}{k+\frac{1}{k}}$ $=\frac{(k^{16} - \frac{1}{k^{16}})(k^{16} + \frac{1}{k^{16}})}{k+\frac{1}{k}}$ $=\frac{k^{32} - \frac{1}{k^{32}}}{k+\frac{1}{k}}$ Hence, the correct answer is $\frac{k^{32} - \frac{1}{k^{32}}}{k+\frac{1}{k}}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)$?
Question : If $x+\frac{1}{x}=\mathrm{\frac{K}{2}}$, then what is the value of $\frac{x^8+1}{x^4} ?$
Question : If $K+\frac{1}{K}=-3$, then what is the value of $\left(\frac{K^6+1}{K^3}\right)+\left(\frac{K^4+1}{K^2}\right)$?
Question : If $x+\frac{1}{x}=2 K$, then what is the value of $x^4+\frac{1}{x^4}$?
Question : If $\left(z+\frac{1}{z}\right)=4$, then what will be the value of $\frac{1}{2}\left(z^2+\frac{1}{z^2}\right)$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile