Question : What is the value of $\frac{1+\sin A}{\cos ^2 A}$?
Option 1: $\frac{1}{1-\sin A}$
Option 2: $\frac{1}{1+\sin A}$
Option 3: $\frac{1}{1+\cos A}$
Option 4: $\frac{1}{1-\cos A}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{1-\sin A}$
Solution : $\frac{1+\sin A}{\cos ^2 A}$ = $\frac{1+\sin A}{1-\sin^2 A}$ = $\frac{1+\sin A}{(1-\sin A)(1+\sin A)}$ = $\frac{1}{1-\sin A}$ Hence, the correct answer is $\frac{1}{1-\sin A}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$?
Question : If $\sin A-\cos A=\frac{\sqrt{3}-1}{2}$, then the value of $\sin A\cdot \cos A$ is:
Question : If $\sin A+\sin ^2 A=1$, then the value of the expression $\left(\cos ^2 A+\cos ^4 A\right)$ is
Question : If $\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=3$, then the value of $\sin^{4}\theta$ is:
Question : What is the value of the expression: $\sin A(1+\frac{\sin A}{\cos A})+\cos A(1+\frac{\cos A}{\sin A})$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile