11 Views

Question : What is the value of $98^2-97^2+96^2-95^2+94^2-93^2+\ldots \ldots 12^2-11^2$?

Option 1: 4725

Option 2: 4796

Option 3: 4851

Option 4: 4926


Team Careers360 13th Jan, 2024
Answer (1)
Team Careers360 16th Jan, 2024

Correct Answer: 4796


Solution : Given: $98^2-97^2+96^2-95^2+94^2-93^2+\ldots \ldots 12^2-11^2$
$=(98+97)(98-97)+(96+95)(96-95)+(94+93)(94-93).......(12+11)(12-11)$
$=195+191+187+......+23$
Here $a=195$, $d=191 - 195 = -4$
$T_n = a + (n-1)d$
⇒ $23 = 195 + (n-1)(-4)$
⇒ $n-1=\frac{23-195}{-4}$
⇒ $n-1=\frac{-172}{-4}$
⇒ $n-1=43$
⇒ $n=44$
Sum of the series = $\frac{n}{2}(a_1 + a_n)$, where $n$ is the number of terms, $a_1$ is the first term, and $a_n$ is the last term.
Here, $n = 44$ (from 195 to 23)
$a_1 = 195$
$a_n = 23$
So, the sum of the series = $\frac{44}{2}(195 + 23) = 22 \times 218 = 4796$
Hence, the correct answer is 4796.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books