Question : What is the value of $\frac{1+\mathrm{x}}{1-\mathrm{x}^2} \div \frac{1+\mathrm{x}}{1-\mathrm{x}^4}-\frac{1-\mathrm{x}^4}{1-\mathrm{x}} \times \frac{1+\mathrm{x}}{1-\mathrm{x}^2}$?
Option 1: $\frac{2 \mathrm{x}\left(1+\mathrm{x}^2\right)}{(1-\mathrm{x})}$
Option 2: $\frac{2 \mathrm{x}\left(1+\mathrm{x}^2\right)}{(\mathrm{x}-1)}$
Option 3: $(1-\mathrm{x})^2$
Option 4: $\left(1+\mathrm{x}^2\right)$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{2 \mathrm{x}\left(1+\mathrm{x}^2\right)}{(\mathrm{x}-1)}$
Solution : Given expression, $\frac{1+\mathrm{x}}{1-\mathrm{x}^2} \div \frac{1+\mathrm{x}}{1-\mathrm{x}^4}-\frac{1-\mathrm{x}^4}{1-\mathrm{x}} \times \frac{1+\mathrm{x}}{1-\mathrm{x}^2}$ $=\frac{\frac{1+\mathrm{x}}{1-\mathrm{x}^2}}{\frac{1+\mathrm{x}}{1-\mathrm{x}^4}}-\frac{(1-\mathrm{x}^2)(1+\mathrm{x}^2)\times(1+\mathrm{x})}{(1-\mathrm{x})\times(1-\mathrm{x}^2)}$ $=\frac{(1+\mathrm{x})(1-\mathrm{x}^4)}{(1-\mathrm{x}^2)(1+\mathrm{x})}-\frac{(1+\mathrm{x}^2)(1+\mathrm{x})}{1-\mathrm{x}}$ $=\frac{(1+\mathrm{x})(1-\mathrm{x^2})(1+\mathrm{x^2})}{(1-\mathrm{x^2})(1+\mathrm{x})}-\frac{(1+\mathrm{x}^2)(1+\mathrm{x})}{1-\mathrm{x}}$ $=\small 1+\mathrm{x^2}-\frac{(1+\mathrm{x}^2)(1+\mathrm{x})}{1-\mathrm{x}}$ $=\small (1+\mathrm{x^2})\times\frac{1-\mathrm{x}-1-\mathrm{x}}{1-\mathrm{x}}$ $=\frac{-2\mathrm{x}(1+\mathrm{x^2})}{1-\mathrm{x}}$ $=\frac{2\mathrm{x}(1+\mathrm{x^2})}{\mathrm{x}-1}$ Hence, the correct answer is $\frac{2\mathrm{x}(1+\mathrm{x^2})}{\mathrm{x}-1}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)$?
Question : The value of $2 \frac{3}{5} \div\left[2 \frac{1}{3} \div\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{2}{3}\right)\right\}\right]$ is equal to:
Question : The value of $\left(\frac{2+7 \times 7 \div 9 \text { of } 9+6 \div 6 \times 2}{4 \div 4 \text { of } 5+7 \times 7 \div 7-6+4}\right)$ is:
Question : What is the value of $\frac{7 \times 4 \div 8}{5 \times 25 \div 125}+\frac{5 \times 4 \div 8}{8 \times 4 \div 16}-\frac{7 \times 4 \div 2}{8 \times 7 \div 4}$?
Question : If $x+\frac{1}{x}=\mathrm{\frac{K}{2}}$, then what is the value of $\frac{x^8+1}{x^4} ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile