Question : What is the value of $\frac{4x^2+9y^2+12xy}{144}$?
Option 1: $(\frac{x}{3} + \frac{y}{4})^2$
Option 2: $(\frac{x}{3} + y)^2$
Option 3: $(\frac{x}{4} + \frac{y}{6})^2$
Option 4: $(\frac{x}{6} + \frac{y}{4})^2$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $(\frac{x}{6} + \frac{y}{4})^2$
Solution : $\frac{4x^2+9y^2+12xy}{144}$ = $\frac{x^2}{36} +\frac{y^2}{16}+\frac{xy}{12}$ = $\frac{x^2}{36} +\frac{y^2}{16}+2×\frac{x}{6}×\frac{y}{4}$ = $(\frac{x}{6} + \frac{y}{4})^2$ Hence, the correct answer is $(\frac{x}{6} + \frac{y}{4})^2$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $6^{x}=3^{y}=2^{z}$, then what is the value of $\frac{1}{y}+\frac{1}{z}-\frac{1}{x}$?
Question : If $x+\frac{1}{x}=3$, then the value of $\frac{3x^{2}-4x+3}{x^{2}-x+1}$ is:
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : If $\sqrt{y}=4x$, then $\frac{x^{2}}{y}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile