Question : What is the value of $\frac{\sin (A+B)}{\sin A \cos B}$?
Option 1: $1 + \cot A \tan B$
Option 2: $1 + \tan A \cot B$
Option 3: $1 – \sin A \cos B$
Option 4: $1 − \cot A \tan B$
Correct Answer: $1 + \cot A \tan B$
Solution : $\frac{\sin (A+B)}{\sin A \cos B}$ = $\frac{\sin A \cos B + \cos A \sin B}{\sin A \cos B}$ = $1+ \cot A \tan B$ Hence, the correct answer is $1+ \cot A \tan B$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Find the value of $\sqrt{\frac{1-\tan A}{1+\tan A}}$.
Question : If $\frac{2 \sin A-\cos A}{\sin A+\cos A}=1$, then find the value of $\cot A$.
Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Question : The value of $(\operatorname{cosec}A+\cot A)(1 - \cos A)$ is:
Question : Simplify $\frac{\cos ^4 \theta-\sin ^4 \theta}{\sin ^2 \theta}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile