Question : What is the value of (a + b + c) {(a - b)2 + (b - c)2 + (c - a)2}?
Option 1: $2 a^3+2 b^3+2 c^3$
Option 2: $2a^3+2b^3+2c^3-6abc$
Option 3: $3abc$
Option 4: $6abc$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2a^3+2b^3+2c^3-6abc$
Solution : $(a+b+c)\left\{(a-b)^2+(b-c)^2+(c-a)^2\right\}$ $=((a+b+c)\left\{(a^2+b^2-2ab+b^2+c^2-2bc+c^2+a^2-2ac)\right\}$ $=((a+b+c)\left\{(2a^2+2b^2+2c^2-2ab-2bc-2ac)\right\}$ $=(2a^3+2ab^2+2ac^2-2a^2b-2abc-2a^2c+2a^2b+2b^3+2c^2b-2ab^2-2b^2c-2abc+2a^2c+2b^2c+2c^3-2abc-2bc^2-2ac^2)$ $=2a^3-2abc+2b^3-2abc+2c^3-2abc$ $=2a^3+2b^3+2c^3-6abc$ Hence, the correct answer is '$2a^3+2b^3+2c^3-6abc$'.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If a + b + c = 15 and a2 + b2 + c2 = 83 then the value of a3 + b3 + c3 – 3abc:
Question : If a + b + c = 0, then the value of (a + b – c)2 + ( b + c – a)2 + ( c + a – b)2 is:
Question : If a + b + c = 1, ab + bc + ca = –1, and abc = –1, then what is the value of a3 + b3 + c3?
Question : What is the value of $a^2+4 b^2+9 c^2-4 a b+12 b c-6 c a$?
Question : If $a^2+b^2+c^2=ab+bc+ca$, then the value of $\frac{11a^4+13b^4+15c^4}{16a^2b^2+19b^2c^2+17c^2a^2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile