Question : What is the value of ${a}^3+{b}^3+{c}^3$ if $(a+b+c)=0$?
Option 1: $a^2+b^2+c^2-3abc$
Option 2: $0$
Option 3: $3abc$
Option 4: $a^2+b^2+c^2-ab-bc-ca$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $3abc$
Solution : Using the identity: $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$. If $a + b + c = 0$, $a^3 + b^3 + c^3 - 3abc = 0$ ⇒ $a^3 + b^3 + c^3 = 3abc$ Hence, the correct answer is $3abc$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $a+b+c$ = 6 and $ab+bc+ca$ = 11, then the value of $bc(b+c)+ca(c+a)+ab(a+b)+3abc$ is:
Question : If $\frac{a^{2} - bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$, then the value of $\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}$ is:
Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Question : If (a + b + c) = 12 and (ab + bc + ca) = 47, find the value of (a3 + b3 + c3 – 3abc).
Question : What is the value of the given expression? $(a+b+c)^2-a^2-b^2-c^2$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile