Question : What is the value of $x$ in the equation $\sqrt{\frac{1+x}{x}}-\sqrt{\frac{x}{1+x}}=\frac{1}{\sqrt6}$?
Option 1: –2
Option 2: 3
Option 3: 2
Option 4: None of these
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : Given: $\sqrt{\frac{1+x}{x}}-\sqrt{\frac{x}{1+x}}=\frac{1}{\sqrt6}$ Squaring both sides ⇒ $\left(\sqrt{\frac{1+x}{x}}-\sqrt{\frac{x}{1+x}}\right)^{2}=\left(\frac{1}{\sqrt6}\right)^{2}$ ⇒ $\frac{1+x}{x} +\frac{x}{1+x}-2=\frac{1}{6}$ ⇒ $\frac{1+x}{x} +\frac{x}{1+x}=\frac{13}{6}$ ⇒ $\frac{1+x^{2}+2x+x^{2}}{x+x^{2}}=\frac{13}{6}$ ⇒ $6+6x^{2}+12x+6x^{2}=13x+13x^{2}$ ⇒ $6+12x^{2}+12x=13x+13x^{2}$ ⇒ $x^{2}+x-6=0$ ⇒ $x^{2}+3x-2x-6=0$ ⇒ $x(x+3)-2(x+3)=0$ ⇒ $(x+3)(x-2)=0$ ⇒ $x=-3, 2$ From the given options we can say that the value of $x$ is 2. Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\cos27^{\circ}$ = $x$, then the value of $\tan 63°$ is:
Question : If $\sin17°=\frac{x}{y}$, then the value of $(\sec17°–\sin73°)$ is:
Question : If $2x=\sqrt{a}+\frac{1}{\sqrt{a}}, a>0$, then the value of $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ is:
Question : If $\frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}-\sqrt{5-x}}=3$, what is the value of $x$?
Question : If $x^2-\frac{1}{x^2}=4 \sqrt{2}$, what is the value of $x^4-\frac{1}{x^4}?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile