Question : What is the value of the expression: $\sin A(1+\frac{\sin A}{\cos A})+\cos A(1+\frac{\cos A}{\sin A})$?
Option 1: $\sec A+\operatorname{cosec}A$
Option 2: $\sin \mathrm{A}+\cos \mathrm{A}$
Option 3: $\sin \mathrm{A}-\cos \mathrm{A}$
Option 4: $\sec \mathrm{A}-\operatorname{cosec} \mathrm{A}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sec A+\operatorname{cosec}A$
Solution : Given: $\sin A(1+\frac{\sin A}{\cos A})+\cos A(1+\frac{\cos A}{\sin A})$ = $\sin A(1+\tan A)+\cos A(1+\cot A)$ = $\sin A(1+\tan A)+\frac{\cos A}{\tan A}(1+\tan A)$ = $(1+\tan A)(\sin A +\frac{\cos^2 A}{\sin A})$ = $(1+\tan A)(\frac{\sin^2 A +cos^2 A}{\sin A})$ = $\frac{(1+\tan A)}{\sin A}$ = $\frac{(1+\frac{\sin A}{\cos A})}{\sin A}$ = $\frac{1}{\sin A} + \frac{1}{cos A}$ = $\operatorname{cosec} A+\sec A$ = $\sec A+\operatorname{cosec}A$ Hence, the correct answer is $\sec A+\operatorname{cosec}A$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The value of $\frac{1+\sin A}{\cos A}+\frac{\cos A}{1+\sin A}$ is:
Question : What is the value of $\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}+\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}$?
Question : What is the value of $\frac{1+\tan A}{\operatorname{cosec} A}+\frac{1+\cot A}{\sec A}$?
Question : If $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$, then the value of $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ is:
Question : Given $A$ is an acute angle, what is the value of $\left(1-\sin ^2 A\right) \operatorname{cosec}^2 A$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile