Question : What is the value of the following in terms of trigonometric ratios? $\frac{\sin A}{1+\cos A}+\frac{1+\cos A}{\sin A}$
Option 1: $2\operatorname{cosec A}$
Option 2: $2\operatorname{cos A}$
Option 3: $2\operatorname{sec A}$
Option 4: $2\operatorname{sin A}$
Correct Answer: $2\operatorname{cosec A}$
Solution : $\frac{\sin A}{1+\cos A}+\frac{1+\cos A}{\sin A}$ $=\frac{\sin^2 A + (1 + \cos A)^2}{\sin A (1 + \cos A)}$ $=\frac{\sin^2 A +1 + 2\cos A + \cos^2 A}{\sin A (1 + \cos A)}$ $=\frac{2 + 2\cos A}{\sin A (1 + \cos A)}$ [$\because \sin^2 A + \cos^2 A = 1$] $=\frac{2(1 + \cos A)}{\sin A (1 + \cos A)}$ $=\frac{2}{\sin A}$ $=2\operatorname{cosec A}$ Hence, the correct answer is $2\operatorname{cosec A}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\sqrt{\frac{1+\sin A}{1-\sin A}}$ is:
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : The value of $\frac{\sin A}{\cot A+\operatorname{cosec} A}-\frac{\sin A}{\cot A-\operatorname{cosec} A}+1$ is:
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}-\sec 35^{\circ} \cdot \sin 55^{\circ}}{\sec 60^{\circ}+\operatorname{cosec} 30^{\circ}}$ is equal to:
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile