Question : What is the value of $\cot \theta$ when $\theta=60^\circ$?
Option 1: $\frac{1}{\sqrt{3}}$
Option 2: $\sqrt{ 3} $
Option 3: $0$
Option 4: $1$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{\sqrt{3}}$
Solution : The value of $\cot \theta$ At $\theta=60^\circ$ $\cot 60^\circ=\frac{1}{\sqrt{3}}$ Hence, the correct answer is $\frac{1}{\sqrt{3}}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin (\theta +18^{\circ})=\cos 60^{\circ}(0< \theta < 90^{\circ})$, then the value of $\cos 5\theta$ is:
Question : If $\mathrm{A}=\cot 30^{\circ} \tan 60^{\circ}+\cot 60^{\circ} \tan 30^{\circ}$, then what is the value of A?
Question : If $\sqrt{3} \tan ^2 \theta-4 \tan \theta+\sqrt{3}=0$, then what is the value of $\tan ^2 \theta+\cot ^2 \theta$?
Question : If $\sin 2\theta=\frac{\sqrt{3}}{2}$, then the value of $\sin 3\theta$ is equal to $(0^{\circ}\leq \theta\leq 90^{\circ})$:
Question : Find the value of $\cos 0^{\circ}+\cos 30^{\circ}-\tan 45^{\circ}+\operatorname{cosec} 60^{\circ}+\cot 90^{\circ}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile