Question : When simplified, the product $(2- \frac{1}{3}) (2-\frac{3}{5}) (2- \frac{5}{7}) .... (2- \frac{997}{999})$ equals:
Option 1: $\frac{5}{999}$
Option 2: $\frac{5}{3}$
Option 3: $\frac{1001}{999}$
Option 4: $\frac{1001}{3}$
Correct Answer: $\frac{1001}{3}$
Solution : Given: $(2- \frac{1}{3}) (2-\frac{3}{5}) (2- \frac{5}{7}) .... (2- \frac{997}{999})$ = $\frac{5}{3}×\frac{7}{5}×\frac{9}{7} .... ×\frac{1001}{999}$ = $\frac{1001}{3}$ Hence, the correct answer is $\frac{1001}{3}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : What is the value of $999 \frac{1}{2} + 999 \frac{1}{6} + 999\frac{1}{12}+999 \frac{1}{20} + 999\frac{1}{30}?$
Question : What is the simplified value of: $7 \frac{1}{3} \div 2 \frac{1}{2}$ of $1 \frac{3}{5}-\left(\frac{3}{8}+\frac{1}{7} \times 1 \frac{3}{4}\right)-\frac{5}{24}$
Question : The value of $\frac{\frac{5}{2}-\frac{3}{7} \times 1 \frac{4}{5} \div 3 \frac{6}{7}}{\frac{3}{2}+1 \frac{2}{5} \div 3 \frac{1}{2} \times 1 \frac{1}{4}}$ is:
Question : The value of 7 ÷ [5 + 1 ÷ 2 - {4 + (4 of 2 ÷ 4) + (5 ÷ 5 of 2)}] is:
Question : What is the simplified value of $\left(1-\frac{1}{4-\frac{2}{1+\frac{1}{\frac{1}{3}+2}}}\right) \times \frac{15}{16} \div \frac{2}{3}$ of $2 \frac{1}{4}-\frac{3+4}{3^3+4^3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile