Question : Which of the following given value is greater than $\sqrt[3]{12}$?
Option 1: $\sqrt[6]{121}$
Option 2: $\sqrt[12]{33214}$
Option 3: $\sqrt[5]{60}$
Option 4: $\sqrt[9]{1500}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt[12]{33214}$
Solution : Given number: $\sqrt[3]{12}$ $\sqrt[6]{121}$, $\sqrt[12]{33214}$ , $\sqrt[5]{60}$, $\sqrt[9]{1500}$ Now $\sqrt[6]{121}=\sqrt[6]{11^2}=\sqrt[3]{11}<\sqrt[3]{12}$ Also, $144>125$ ⇒ $125 × 12^3<144 × 12^3$ ⇒ $(5×12)^3<12^5$ ⇒ $(60)^3<12^5$ ⇒ $\sqrt[5]{60}<\sqrt[3]{12}$ Again, $1500<1728$ ⇒ $(1500)^\frac{1}{9}<(1728)^\frac{1}{9}$ ⇒ $\sqrt[9]{1500}<\sqrt[3]{12}$ Also, $33214>20736$ ⇒ $(33214)^\frac{1}{12}>(20736)^\frac{1}{12}$ ⇒ $\sqrt[12]{33214}>\sqrt[3]{12}$ Hence, the correct answer is $\sqrt[12]{33214}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of $\sqrt{9+2\sqrt{16}+\sqrt[3]{512}}$ is:
Question : If $x=1+\sqrt{2}+\sqrt{3}$, then the value of $(2x^4-8x^3-5x^2+26x-28)$ is:
Question : Simplify the expression $\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}$, where $x=2$ and $y=3$.
Question : Find the value of the given expression. $\sqrt{20-\sqrt{20-\sqrt{20-\sqrt{20-\cdots \infty}}}}$
Question : Using $\cos (A+B)=\cos A \cos B-\sin A \sin B$, find the value of $\cos 75^\circ$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile