Question : Which of the following is a value of $\theta$, when $\cos ^2 \theta-2+\cos \theta=0$?
Option 1: 60°
Option 2: 90°
Option 3: 30°
Option 4: 0°
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0°
Solution : Given, $\cos ^2 \theta-2+\cos \theta=0$ ⇒ $\cos ^2 \theta+2\cos \theta-\cos\theta-2=0$ ⇒ $\cos \theta(\cos \theta+2)-1(\cos \theta+2)=0$ ⇒ $(\cos \theta+2)(cos \theta-1)=0$ ⇒ $\cos \theta=-2$ or $\cos \theta=1$ Since the range of $\cos\theta$ is –1 < $\cos \theta$ < 1 Hence, $\cos\theta$ cannot be –2. So, $\cos \theta=1⇒\theta= 0°$ Hence, the correct answer is 0°.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $0^{\circ} < \theta < 90^{\circ}$ and $2 \sin^{2}\theta +3\cos\theta =3$, then the value of $\theta$ is:
Question : If $\sin (\theta+30°)=\cos 5 \theta$, then what is the value of $\theta$?
Question :
If $\tan2\theta\tan3\theta=1$ where $0°<\theta<90°$, then the value of $\theta$ is:
Question : The value of $\cos \ 0°+\cos\ 1°+\cos\ 2°......\cos\ 180°$ is:
Question : If $2\tan^2A+4\cos^4A=3$, then the possible value of $A$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile