Question : Which of the following is equal to $[\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}]$?
Option 1: $\operatorname{cosec} \theta \sec \theta$
Option 2: $\sec \theta\tan \theta$
Option 3: $\operatorname{cosec} \theta\tan \theta$
Option 4: $\cot \theta \sec \theta$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\operatorname{cosec} \theta \sec \theta$
Solution : Given: The expression is $[\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}]$. We know the trigonometric ratios, $\frac{1}{\sin \theta} =\operatorname{cosec} \theta$ and $\frac{1}{\cos \theta} = \sec \theta$ and the trigonometric identity, $\sin^2\theta+\cos^2\theta=1$ $[\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}]$ $=\frac{\sin^2\theta+\cos^2\theta}{\sin \theta\times \cos \theta}$ $=\frac{1}{\sin \theta\times \cos \theta}=\operatorname{cosec} \theta \sec \theta$ Hence, the correct answer is $\operatorname{cosec} \theta \sec \theta$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : $\frac{(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)}{(\sec \theta+\tan \theta)(1-\sin \theta)}$ is equal to:
Question : $\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta(1+\cos \theta)} \times \frac{\sqrt{\sec ^2 \theta+\operatorname{cosec}^2 \theta}}{\tan \theta+\cot \theta}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : The value of $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$ is:
Question : Let $0^{\circ}<\theta<90^{\circ}$, $\left(1+\cot ^2 \theta\right)\left(1+\tan ^2 \theta\right) × (\sin \theta-\operatorname{cosec} \theta)(\cos \theta-\sec \theta)$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile