Question : Which of the following is TRUE? I. $\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt[4]{29}}>\frac{1}{\sqrt5}$ II. $\frac{1}{\sqrt[4]{29}}>\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt5}$ III. $\frac{1}{\sqrt5}>\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt[4]{29}}$ IV. $\frac{1}{\sqrt5}>\frac{1}{\sqrt[4]{29}}>\frac{1}{\sqrt[3]{12}}$
Option 1: Only I
Option 2: Only II
Option 3: Only III
Option 4: Only IV
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: Only III
Solution : Calculating the values: (taking the 12 th power of each term) $\frac{1}{\sqrt[3]{12}} \rightarrow \frac{1}{12^4} = \frac{1}{20736}$ $\frac{1}{\sqrt[4]{29}} \rightarrow \frac{1}{29^3} =\frac{1}{24389}$ $\frac{1}{\sqrt5} \rightarrow \frac{1}{5^6} = \frac{1}{15625}$ In fractions, the fraction value is low for fractions with large denominators. Comparing these values, we get: $\frac{1}{\sqrt5} >\frac{1}{\sqrt[3]{12}} > \frac{1}{\sqrt[4]{29}}$ Thus, statement III is correct. Hence, the correct answer is 'Only III'.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Which of the following is TRUE? I. $\sqrt[3]{11}>\sqrt{7}>\sqrt[4]{45}$ II. $\sqrt{7}>\sqrt[3]{11}>\sqrt[4]{45}$ III. $\sqrt{7}>\sqrt[4]{45}>\sqrt[3]{11}$ IV. $\sqrt[4]{45}>\sqrt{7}>\sqrt[3]{11}$
Question : Which of the following statement(s) is/are true? I. $\sqrt{12}<\sqrt[3]{16}<\sqrt[4]{24}$ II. $\sqrt[3]{25}>\sqrt[4]{32}>\sqrt[6]{48}$ III. $\sqrt[4]{9}>\sqrt[3]{15}>\sqrt[6]{24}$
Question : Which of the following statement(s) is/are TRUE? I. $\frac{2}{3\sqrt5}<\frac{3}{2\sqrt5}<\frac{5}{4\sqrt3}$ II. $\frac{3}{2\sqrt5}<\frac{2}{3\sqrt3}<\frac{7}{4\sqrt5}$
Question : Which of the following statement(s) is/are TRUE? I. $\sqrt{11}+\sqrt7<\sqrt{10}+\sqrt8$ II. $\sqrt{17}+\sqrt{11}>\sqrt{15}+\sqrt{13}$
Question : Which of the following statement(s) is/are TRUE? I. $33^{3}>3^{33}$ II. $333>(3^{3})^{3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile