Question : Which of the following statements is correct? I. The value of $100^2-99^2+98^2-97^2+96^2-95^2+$ $94^2-93^2+\ldots \ldots+22^2-21^2$ is 4840. II. The value of $\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4-\frac{1}{\mathrm{k}^4}\right)$ is $\mathrm{k}^{16} - \frac{1}{\mathrm{k}^{16}}$.
Option 1: Neither I nor II
Option 2: Only II
Option 3: Only I
Option 4: Both I and II
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: Only I
Solution : I. $100^2-99^2+98^2-97^2+96^2-95^2+$ $94^2-93^2+\ldots \ldots+22^2-21^2$ $= (100-99)(100+99) + (98-97)(98+97) + .......... + (22-21)(22+21)$ $= (1)(199) + (1)(195) + ............. + (1)(43)$ Here, $a$ = 43 and $d$ = 4 Let the number of terms be $n$. So, $a + (n-1)d = 199$ $⇒ 43 + 4(n-1) = 199$ $⇒ 4(n-1) = 156$ $⇒ n-1 = 39$ $⇒ n = 40$ Sum of AP = $\frac{n}{2}(2a + (n-1)d)=\frac{40}{2}(43 + 199)= 4840$ II. $\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4-\frac{1}{\mathrm{k}^4}\right)$ = $\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}^2-\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)\left(\mathrm{k}^4-\frac{1}{\mathrm{k}^4}\right)$ = $\left(\mathrm{k}^4-\frac{1}{\mathrm{k}^4}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)\left(\mathrm{k}^4-\frac{1}{\mathrm{k}^4}\right)$ = $\left(\mathrm{k}^8-\frac{1}{\mathrm{k}^8}\right)\left(\mathrm{k}^4-\frac{1}{\mathrm{k}^4}\right)$ Hence, the correct answer is only I.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : Which of the following statements is correct? I. The value of $100^2-99^2+98^2-97^2+96^2-95^2+94^2$ $- 93^2+\ldots \ldots+22^2-21^2$ is 4840. II. The value of
Question : What is the value of
Question : Which of the following statements is correct? I. If $K+\frac{1}{K}=12$, then ${K}^2+\frac{1}{K^2}=142$ II. The value of $({k}^2+\frac{1}{{k}^2})({k}-\frac{1}{{k}})({k}^4+\frac{1}{{k}^4})({k}+\frac{1}{{k}})$ is ${k}^{16}-\frac{1}{{k}^{16}}$
Question : The value of $\left(1 \frac{1}{3} \div 2 \frac{6}{7}\right.$ of $\left.5 \frac{3}{5}\right) \times\left(6 \frac{2}{5} \div 4 \frac{1}{2}\right.$ of $\left.5 \frac{1}{3}\right) \div\left(\frac{3}{4} \times 2 \frac{2}{3} \div \frac{5}{9}\right.$ of
Question : If $\mathrm{k}+\frac{1}{\mathrm{k}}=4$, then what is the value of $\mathrm{k}^4+\frac{1}{\mathrm{k}^4}$ ?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile