11 Views

Question : Which of the following statements is correct?
I. The value of $100^2-99^2+98^2-97^2+96^2-95^2+94^2$ $- 93^2+\ldots \ldots+22^2-21^2$ is 4840.
II. The value of
$\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4-\frac{1}{\mathrm{k}^4}\right) \text { is } \mathrm{k}^{16}-\frac{1}{\mathrm{k}^{16}}$.

Option 1: Neither I nor II

Option 2: Both I and II

Option 3: Only II

Option 4: Only I


Team Careers360 10th Jan, 2024
Answer (1)
Team Careers360 24th Jan, 2024

Correct Answer: Only I


Solution : Statement I: The value of $100^2-99^2+98^2-97^2+96^2-95^2+94^2$ $-93^2+\ldots \ldots+22^2-21^2$ is 4840.
Let us solve the series:
$100^2-99^2+98^2-97^2+96^2-95^2+94^2$ $-93^2+\ldots \ldots+22^2-21^2$
$= (100+99)(100-99) + (98+97)(98-97) + .... + (22+21)(22-21)$$= 100 + 99 + 98 + 97 +.....+21$---------------(1)
$=$ Sum of first 100 natural numbers - Sum of first 20 natural numbers
$= \frac{100×101}{2} - \frac{20×21}{2}$ [we know that the sum of n consecutive numbers is $\frac{n(n+1)}{2}$]
$= 4840$
Hence, the statement I is correct.
Statement II:
$\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4-\frac{1}{\mathrm{k}^4}\right)$
$=(k^2 +\frac{1}{k^2})(k-\frac{1}{k})(k+\frac{1}{k})(k^4 + \frac{1}{k^4})(k^4-\frac{1}{k^4})$
$=(k^2+\frac{1}{k^2})(k^2-\frac{1}{k^2})(k^8-\frac{1}{k^8})$
$=(k^4-\frac{1}{k^4})(k^8-\frac{1}{k^8})$
Which is not equal to $k^{16}-\frac{1}{k^{16}}$.
Hence, the correct answer is only I.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books