Question : Which of the following statements is correct? I. The value of $100^2-99^2+98^2-97^2+96^2-95^2+94^2$ $- 93^2+\ldots \ldots+22^2-21^2$ is 4840. II. The value of $\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4-\frac{1}{\mathrm{k}^4}\right) \text { is } \mathrm{k}^{16}-\frac{1}{\mathrm{k}^{16}}$.
Option 1: Neither I nor II
Option 2: Both I and II
Option 3: Only II
Option 4: Only I
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: Only I
Solution : Statement I: The value of $100^2-99^2+98^2-97^2+96^2-95^2+94^2$ $-93^2+\ldots \ldots+22^2-21^2$ is 4840. Let us solve the series: $100^2-99^2+98^2-97^2+96^2-95^2+94^2$ $-93^2+\ldots \ldots+22^2-21^2$ $= (100+99)(100-99) + (98+97)(98-97) + .... + (22+21)(22-21)$$= 100 + 99 + 98 + 97 +.....+21$---------------(1) $=$ Sum of first 100 natural numbers - Sum of first 20 natural numbers $= \frac{100×101}{2} - \frac{20×21}{2}$ [we know that the sum of n consecutive numbers is $\frac{n(n+1)}{2}$] $= 4840$ Hence, the statement I is correct. Statement II: $\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^4-\frac{1}{\mathrm{k}^4}\right)$ $=(k^2 +\frac{1}{k^2})(k-\frac{1}{k})(k+\frac{1}{k})(k^4 + \frac{1}{k^4})(k^4-\frac{1}{k^4})$ $=(k^2+\frac{1}{k^2})(k^2-\frac{1}{k^2})(k^8-\frac{1}{k^8})$ $=(k^4-\frac{1}{k^4})(k^8-\frac{1}{k^8})$ Which is not equal to $k^{16}-\frac{1}{k^{16}}$. Hence, the correct answer is only I.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Which of the following statements is correct? I. The value of $100^2-99^2+98^2-97^2+96^2-95^2+$ $94^2-93^2+\ldots \ldots+22^2-21^2$ is 4840. II. The value of
Question : What is the value of
Question : Which of the following statements is correct? I. If $K+\frac{1}{K}=12$, then ${K}^2+\frac{1}{K^2}=142$ II. The value of $({k}^2+\frac{1}{{k}^2})({k}-\frac{1}{{k}})({k}^4+\frac{1}{{k}^4})({k}+\frac{1}{{k}})$ is ${k}^{16}-\frac{1}{{k}^{16}}$
Question : The value of $\left(1 \frac{1}{3} \div 2 \frac{6}{7}\right.$ of $\left.5 \frac{3}{5}\right) \times\left(6 \frac{2}{5} \div 4 \frac{1}{2}\right.$ of $\left.5 \frac{1}{3}\right) \div\left(\frac{3}{4} \times 2 \frac{2}{3} \div \frac{5}{9}\right.$ of
Question : If $\mathrm{k}+\frac{1}{\mathrm{k}}=4$, then what is the value of $\mathrm{k}^4+\frac{1}{\mathrm{k}^4}$ ?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile