7 Views

Question : Which of the following statements is true?
I. $\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots \ldots \frac{1}{110}<\frac{5}{6}$
II. $\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\ldots \ldots \frac{1}{143}>\frac{7}{13}$

Option 1: Only I

Option 2: Both I and II

Option 3: Only II

Option 4: Neither I nor II


Team Careers360 11th Jan, 2024
Answer (1)
Team Careers360 24th Jan, 2024

Correct Answer: Neither I nor II


Solution : Statement I:
$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots \ldots \frac{1}{110}<\frac{5}{6}$
Expand LHS
$⇒\frac{1}{2}+\frac{1}{2\times{3}}+\frac{1}{3\times{4}}+\ldots \ldots \frac{1}{10\times{11}}<\frac{5}{6}$
$⇒\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots \ldots \frac{1}{10}-\frac{1}{11}<\frac{5}{6}$
$⇒1-\frac{1}{11}<\frac{5}{6}$
$⇒\frac{10}{11}<\frac{5}{6}$
which is wrong,
So, statement I is incorrect.
Statement II:
$\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\ldots \ldots \frac{1}{143}>\frac{7}{13}$
$⇒\frac{1}{3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\ldots \ldots \frac{1}{11\times13}>\frac{7}{13}$
$⇒\frac{1}{3}+\frac{2}{2}[\frac{1}{3\times5}+\frac{1}{5\times7}+\ldots \ldots \frac{1}{11\times13}]>\frac{7}{13}$
$⇒\frac{1}{3}+\frac{1}{2}[\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\ldots \ldots \frac{1}{11}-\frac{1}{13}]>\frac{7}{13}$
$⇒\frac{1}{3}+\frac{1}{2}[\frac{1}{3}-\frac{1}{13}]>\frac{7}{13}$
$⇒\frac{1}{3}+\frac{5}{39}>\frac{7}{13}$
$⇒\frac{6}{13}>\frac{7}{13}$
which is wrong
So, statement II is incorrect.
$\therefore$ Both the statement is incorrect.
Hence, the correct answer is Neither I nor II.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books