Question : $\triangle$XYZ is right angled at Y. If $\cos X=\frac{3}{5}$, then what is the value of $\operatorname{cosec}Z$?
Option 1: $\frac{3}{4}$
Option 2: $\frac{5}{3}$
Option 3: $\frac{4}{5}$
Option 4: $\frac{4}{3}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{5}{3}$
Solution : Given: $\triangle$XYZ is right-angled at Y and $\cos X=\frac{3}{5}$ Since $\triangle$XYZ is right-angled at Y, So, X + Z = 90° ⇒ X = 90° – Z Now, $\cos X=\frac{3}{5}$ ⇒ $\cos(90°–Z)=\frac{3}{5}$ ⇒ $\sin Z=\frac{3}{5}$ $\therefore\operatorname{cosec}Z=\frac{5}{3}$ [$\because$ $\operatorname{cosec}Z=\frac{1}{\sin Z}$] Hence, the correct answer is $\frac{5}{3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : In a right-angled triangle $\mathrm{XYZ}$, if $\mathrm{X}=60^{\circ}$ and $\mathrm{Y}=30^{\circ}$, then find the value of $\sin (\mathrm{X}-\mathrm{Y})$.
Question : $\triangle$XYZ is right angled at Y. If $\angle$X = 60°, then find the value of $(\sec Z+\frac{2}{\sqrt3})$.
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Question : If $x=\operatorname{cosec \theta}-\sin\theta$ and $y=\sec\theta-\cos\theta$, then the relation between $x$ and $y$ is:
Question : If $x$ = $y$ = $z$, then $\frac{\left (x+y+z \right )^{2}}{x^{2}+y^{2}+z^{2}}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile