Question : $\triangle$XYZ is right angled at Y. If $\angle$X = 60°, then find the value of $(\sec Z+\frac{2}{\sqrt3})$.
Option 1: $\frac{4}{\sqrt3}$
Option 2: $\frac{\sqrt2+2}{2\sqrt2}$
Option 3: $\frac{7}{2\sqrt3}$
Option 4: $\frac{4}{2\sqrt3}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{4}{\sqrt3}$
Solution : Given: $\triangle$XYZ is right angled at Y and $\angle$X = 60°. $(\sec Z+\frac{2}{\sqrt3})$ = $(\sec(90°-60°)+\frac{2}{\sqrt3})$ = $(\sec30°+\frac{2}{\sqrt3})$ = $(\frac{2}{\sqrt3}+\frac{2}{\sqrt3})$ = $\frac{4}{\sqrt3}$ Hence, the correct answer is $\frac{4}{\sqrt3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin(60^{\circ}-x)=\cos(y+60^{\circ})$, then the value of $\sin(x-y)$ is:
Question : $\triangle$XYZ is right angled at Y. If $\cos X=\frac{3}{5}$, then what is the value of $\operatorname{cosec}Z$?
Question : In a right-angled triangle $\mathrm{XYZ}$, if $\mathrm{X}=60^{\circ}$ and $\mathrm{Y}=30^{\circ}$, then find the value of $\sin (\mathrm{X}-\mathrm{Y})$.
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Question : If $\small x=a\left (b-c \right),\; y=b\left (c-a \right) ,\; z=c\left (a-b \right)$, then the value of $\left (\frac{x}{a} \right)^{3}+\left (\frac{y}{b} \right)^{3}+\left (\frac{z}{c} \right)^{3}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile