Careers360 Logo
Kirchoff’s Equation

Kirchoff’s Equation

Edited By Shivani Poonia | Updated on Oct 09, 2024 12:09 PM IST

According to Kirchhoff's Law, the enthalpy of a reaction is temperature-dependent. Generally, with an increase in temperature, the enthalpy of any substance also increases, and as such, the enthalpy of both the products and the reactants is increased. If the change in enthalpy of products and reactants is not the same, it will alter the overall enthalpy of the reaction. The heat capacity at constant pressure is equal to the change in enthalpy with respect to the change in temperature. Now, if the heat capacities are independent of temperature, then the change in enthalpy will be some function of this difference in temperature and heat capacities.

This Story also Contains
  1. Kirchhoff's Law
  2. Some Solved Examples
  3. Summary

Kirchhoff's Law

The variation of enthalpy of a reaction with changes in temperature. In general, the enthalpy of any substance increases with temperature, which means both the products and the reactants' enthalpies increase. The overall enthalpy of the reaction will change if the increase in the enthalpy of products and reactants is different.

At constant pressure, the heat capacity is equal to the change in enthalpy divided by the change in temperature.


cp=ΔHΔT...............1

Therefore, if the heat capacities do not vary with temperature then the change in enthalpy is a function of the difference in temperature and heat capacities. The amount that the enthalpy changes by is proportional to the product of temperature change and change in heat capacities of products and reactants. A weighted sum is used to calculate the change in heat capacity to incorporate the ratio of the molecules involved since all molecules have different heat capacities at different states.

ΔHTf=ΔHTi+TiTfΔCpdT...........2

If the heat capacity is temperature-independent over the temperature range, then Equation 1 can be approximated as

ΔHTf=ΔHTi+ΔCp(TfTi)................3

where

  • ΔCp is the change in heat capacity of the reaction and is defined as

ΔCP=f(P)iPCpf(R)iRCP

It has exact same treatment for Cp as we have for the calculation of change in enthalpy

  • HTi and HTf are the enthalpy at the respective temperatures.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Equation 3 can only be applied to small temperature changes, (<100 K) because over a larger temperature change, the heat capacity is not constant. There are many biochemical applications because it allows us to predict enthalpy changes at other temperatures by using standard enthalpy data.

In case the variation of Cp with temperature is given then we can use equation 2 and integrate the function of Cp as f(T) with respect to T and obtain the result.

Recommended topic video on ( Kirchoff's Equation)

Some Solved Examples

Example 1: Calculate the change in enthalpy (in kJ/mol) at 358K for the given reaction

Fe2O3+3H22Fe+3H2O

Given ΔH298=35 KJ/mol

Substance Fe2O3FeH2OH2 Cp (J/K.mol) 100 25 75 30

1)29.7

2)-29.9

3)40.6

4)-40.6

Solution

According to the equation,

Fe2O3+3H22Fe+3H2O

So Change in specific heat capacity,

ΔCp=CpProducts Cpereactants ΔCp=(2×25+3×75)(100+3×30)=85 J/K.mol

Also, according to Kirchoff’s equation,

ΔCp=ΔHT2ΔHT1 T2T1

85×103=ΔH358(35)358298

ΔH358 K=29.9 kJ/mol

Hence, the answer is (-29.9kJ/mol).

Example 2: Enthalpy of sublimation of iodine is 24calg1 at 200C. If the specific heat of I2(s) and I2(vap) are 0.055 and 0.031calg1 K1 respectively, then enthalpy of sublimation of iodine at 250C in cal 1 is :
1)2.85

2) 22.8

3)5.7

4)11.4

Solution

Enthalpy of Sublimation -

Amount of enthalpy change to sublimise 1 mole solid into 1-mole vapor at a temperature below its melting point

I2( s)I2( g),ΔH200=24cal/g

Specific heat of I2(s) & I2(vap) are respectively, 0.055calg1k1 & 0.031calg1k1

S= Heat capacity of Product - Reactant

ΔS=0.0310.055

=0.024

Applying Kirchoff's equation, we get:

ΔH2=ΔH1+ΔS(T2T1)ΔH2=24+(0.024)×50=241.2=22.8

Enthalpy of sublimation of iodine at

250C=22.8cal/g

Hence, the answer is (22.8 cal/g).

Example 3: The standard heat of formation for gaseous NH3 is -11 kcal mol-1 at 298 K. Given that at 298 K, the constant pressure heat capacities of gaseous N2, H2 and NH3 are 7 , 6 and 8 cal/mol respectively. Find change in enthalpy (in Kcal/mol) at 558K:

1)12.17

2)-9.83

3) -12.17

4)9.83

Solution

The heat of the formation of NH3 is represented according to the equation:

12 N2( g)+32H2( g))NH3( g)

ΔH298 K=11.0kcalmol

Now, we know from Kirchoff's Equation

ΔH2ΔH1T2T1=ΔCP

where ΔCP=f(P)iPCpf(R)iRCp

Putting the given values in the equation, we have

ΔH2(11.1)558298=(8.012×7.032×6.0)×103

ΔH2=12.17kcalmol1

Hence, the answer is the option(3).

Example 4: The heat capacity at constant pressure of a gas varies with temperature as Cp = 9+10T J/(mole-K). What will be the enthalpy of formation (in kJ/mol) when the temperature rises to 350 K from 300 K? Given that the enthalpy of formation at 300K is 45 kJ/mol?

1) 208

2)20

3)220

4)45

Solution

According to Kirchoff’s equation,

ΔHT2=ΔHT1+T1T2CpdT

We have given,

ΔHT1=45 kJ/molT1=300 K T2=350 K

CP=(9+10 T)JmolK

Putting all these values in the equation we get,

ΔH=45×103+300350(9+10 T)dTΔH=45×103+[9 T+5 T2]300350ΔH=45×103+[9(350300)+5×(35023002)]ΔH=45×103+[450+162500]ΔH=208 kJ/mol

Hence, the answer is (ΔH=208 kJ/mol).

Summary

It finds extensive application in thermodynamics and physical chemistry for understanding temperature effects on reactions, optimizing reaction conditions, and performing energy balance calculations. By providing insights into the temperature sensitivity of chemical reactions, Kirchhoff's equation helps in designing efficient and safe chemical processes, making it an indispensable tool in both academic and industrial settings. By knowing the heat capacities, one can calculate the enthalpy change at different temperatures, aiding in the analysis and design of chemical reactions and processes.

Entropy Change

19 Feb'25 12:52 PM

State Functions

19 Feb'25 10:35 AM

Tautomerism

19 Feb'25 10:16 AM

Born Habers Cycle

18 Feb'25 11:40 PM

Hess’s Law

18 Feb'25 11:38 PM

Resonance Energy

18 Feb'25 11:36 PM

Articles

Back to top