Exponential equations and quadratic equations are important components of algebra, each with distinct characteristics and applications. However, there are scenarios where exponential equations can be transformed into a quadratic form, allowing the use of techniques from quadratic equations to solve them. Exponential equations can be expressed in quadratic form, providing insights into their properties, solution methods, and applications.
JEE Main 2025: Sample Papers | Mock Tests | PYQs | Study Plan 100 Days
JEE Main 2025: Maths Formulas | Study Materials
JEE Main 2025: Syllabus | Preparation Guide | High Scoring Topics
A polynomial equation in which the highest degree of a variable term is 2 is called a quadratic equation.
Standard form of quadratic equation is $a x^2+b x+c=0$
Where a, b, and c are constants (they may be real or imaginary) and called the coefficients of the equation and $a \neq 0$ (a is also called the leading coefficient).
Eg, $-5 x^2-3 x+2=0, x^2=0,(1+i) x^2-3 x+2 i=0$
As the degree of the quadratic polynomial is 2, so it always has 2 roots (number of real roots + number of imaginary roots = 2)
Roots of quadratic equation
The root of the quadratic equation is given by the formula:
$\begin{aligned} & x=\frac{-b \pm \sqrt{D}}{2 a} \\ & \text { or } \\ & x=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\end{aligned}$
Where D is called the discriminant of the quadratic equation, given by $D=b^2-4 a c$,
An equation of the form ax = b is known as an exponential equation, where
(i) $\mathrm{x} \in \phi$, if $\mathrm{b} \leq 0$
(ii) $x=\log _a b$, if $b>0, a \neq 0$
(iii) $\mathrm{x} \in \phi$, if $\mathrm{a}=1, \mathrm{~b} \neq 1$
(iv) $\mathrm{x} \in \mathrm{R}$, if $\mathrm{a}=1, \mathrm{~b}=1$ (since $1^{\mathrm{x}}=1 \Rightarrow 1=1, \mathrm{x} \in \mathrm{R}$ )
1. Equation of the form $a^{f(x)}=1$, where $a>0$ and $a \neq 1$, then solve $f(x)=0$
For Example
The given equation is $7^{x^2+4 x+4}=1$
$\Rightarrow \mathrm{x}^2+4 \mathrm{x}+4=0 \quad\left[\because \mathrm{a}^0=1, \mathrm{a}\right.$ is constant $]$
$\Rightarrow(\mathrm{x}+2)(\mathrm{x}+2)=0 \Rightarrow \mathrm{x}=-2$
2. Equation of the form $f\left(a^x\right)=0$ then $f(t)=0$ where $t=a^x$
For example
The given equation is $4^x-3 \cdot 2^x-4=0$ equation is quadratic in $2^x$, so substitute $2^x=t$
$
\begin{aligned}
& \Rightarrow\left(2^{\mathrm{x}}\right)^2-3\left(2^{\mathrm{x}}\right)-4=0 \\
& \Rightarrow \mathrm{t}^2-3 \mathrm{t}-4=0 \\
& \Rightarrow(\mathrm{t}-4)(\mathrm{t}+1)=0 \\
& \Rightarrow \mathrm{t}=4, \mathrm{t}=-1
\end{aligned}
$
since, $\mathrm{t}=2^{\mathrm{x}}$
$
2^x=4 \Rightarrow 2^x=2^2 \Rightarrow x=2
$
and, $2^{\mathrm{x}}=-1$, No solution
Finally we get $x=2$
Exponential equations in quadratic form present an intriguing intersection of exponential and quadratic functions. By transforming exponential equations into quadratic form, we can apply familiar quadratic-solving techniques to find solutions. Understanding and mastering these transformations expand our ability to tackle a broader range of mathematical problems, enhancing both theoretical knowledge and practical problem-solving skills.
Recommended Video :
Example 1: If the sum of all the roots of the equation $\mathrm{e}^{2 x}-11 \mathrm{e}^x-45 \mathrm{e}^{-x}+\frac{81}{2}=0$ is $\log _{\mathrm{e}} \mathrm{p}$, then $\mathrm{p}$ is equal to______________.
1) 45
2) 17
3) 46
4) 16
Solution
The equation can be rewritten as
$2 e^{3 x}-22 e^{2 x}+81 e^x-90=0$
Let the roots are $\alpha, \beta, \gamma$
Let $\mathrm{e}^{\mathrm{x}}=\mathrm{t}_{,} \mathrm{e}^\alpha=\mathrm{t}_1, \mathrm{e}^\beta=\mathrm{t}_2, \mathrm{e}^\gamma=\mathrm{t}_3$
$2 t^3-22 t^2+81 t-90=0$
Product of roots $=\mathrm{t}, \mathrm{t}_2 \mathrm{t}_3=\mathrm{e}^\alpha \cdot \mathrm{e}^\beta \cdot \mathrm{e}^\gamma=\frac{90}{2}=45$
$\Rightarrow \mathrm{e}^{\alpha+\beta+\gamma}=45$
$\Rightarrow \alpha+\beta+\gamma=\log _e 45$
So $\mathrm{p}=45$
Hence, the answer is 45.
Example 2: The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking, it was found that, in the observations, 20 was misread as 5 . Then, the correct variance is equal to_______.
1) 17
2) 43
3) 81
4) 12
Solution
$\frac{\displaystyle\sum_{i=1}^{14} x i+5}{15}=8$
$\Rightarrow \displaystyle\sum_{i=1}^{14} x i=115 \Rightarrow \displaystyle\sum_{i=1}^{11} x i+20=123$
$\Rightarrow$ Real Mean $=\frac{\displaystyle\sum_{i=1}^{14} x i+20}{15}=\frac{13}{15}$
$\frac{\displaystyle\sum_{i=1}^{14} x i^2+5^2}{15}-(8)^2=9 \Rightarrow \displaystyle\sum_{i=1}^{14} x i^2=1070$
$\begin{aligned} \text { So Real variance } & =\frac{\displaystyle\sum_{i=1}^{14} \times i^2+20^2}{15}-(9)^2 \\ & =\frac{1070+400}{15}-(9)^2 \\ & =\frac{1470}{15}-81\end{aligned}$
$=98-81=17$
Hence, the answer is 17.
Example 3: The number of real roots of the equation $e^{6 x}-e^{4 x}-2 e^{3 x}-12 e^{2 x}+e^x+1=0$ is
1) 2
2) 4
3) 6
4) 1
Solution
$
\begin{aligned}
& e^{6 x}-e^{4 x}-2 e^{3 x}-12 e^{2 x}+e^x+1=0 \\
& \left(\left(c^{3 x}\right)^2-2 e^{3 x}+1\right)-c^x\left(e^{3 x}-1\right)-12 e^{2 r}=0 \\
& \Rightarrow\left(e^{3 x}-1\right)^2-e^x\left(e^{3 x}-1\right)-12\left(e^x\right)^2=0 \\
& \text { Let } e^{3 r}-1=p \text { and } e^2=q \\
& =p^2-p q-12 q^2=0 \\
& \Rightarrow p^2-4 p q+3 p q-12 q^2=0 \\
& B(p-4 q)(p+3 q)=0 \\
& E p=4 q \text { or } p=-3 q \\
& \Rightarrow e^{3 x}-1=4 e^x \text { or } e^{3 x}-1=-3 e^x \\
& \operatorname{Let} e^x=t(\therefore t>0) \\
& \Rightarrow t^3-4 t-1=0 \text { or } t^3+3 t-1=0 \\
& \operatorname{Let} f(t)=t^3-4 t-1 \& \operatorname{Let} g(t)=t^3+3 t-1 \\
& f^{\prime}(t)=3 t^2-4 \& g^{\prime}(t)=3 t^2+3
\end{aligned}
$
$f(t)$ has one positive root $\mathrm{t}=1 \& g(t)$ has one positive root (say $\mathrm{t}_1$ )
So 2 solutions
Example 4: The number of real roots of the equation $e^{4 r}-e^{3 r}-4 e^{2 r}-e^r+1=0$ is equal to $\qquad$.
1) 2
2) 0
3) 1
4) 3
Solution
$
e^{4 x}-e^{2 x}-4 e^{2 x}-e^x+1=0
$
Let $e^x=1$
$
\begin{aligned}
& t^1-t^4-4 t^2-t+1=0 \\
& \Rightarrow t^2-t-4-\frac{1}{t}+\frac{1}{t^2}=0 \\
& \Rightarrow\left(t^2+\frac{1}{t^2}\right)-\left(t+\frac{1}{t}\right)-4=0 \\
& \Rightarrow\left(t+\frac{1}{t}\right)^2-\left(t+\frac{1}{t}\right)-6=0
\end{aligned}
$
Let $t+\frac{1}{t}=t$
$
\begin{aligned}
& \Rightarrow u^2-u-6=0 \\
& \Rightarrow(u-3)(u+2)=0 \\
& \Rightarrow u=3,-2 \\
& \Rightarrow t+\frac{1}{t}=3 \quad\left(\text { As } t+\frac{1}{t}=c^x+\frac{1}{c^x}>0\right) \\
& \Rightarrow t^2-3 t+1=0 \\
& \Rightarrow t=\frac{3 \pm \sqrt{9-4}}{2}=\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2} \\
& \Rightarrow e^x=\frac{3+\sqrt{5}}{2}, e^t=\frac{3-\sqrt{5}}{2} \\
& \Rightarrow x=\ln \left(\frac{3+\sqrt{5}}{2}\right) \cdot \ln \left(\frac{3-\sqrt{5}}{2}\right)
\end{aligned}
$
Hence, the answer is the option 1.
Example 5: The number of real roots of the equation $\mathrm{e}^{4 x}+2 \mathrm{e}^{3 x}-\mathrm{e}^x-6=\mathrm{n}$ is:
1)
2)
3)
4)
Solution
$f(x)=e^{4 x}+2 e^{3 x}-e^x-6$
$f^{\prime}(x)=4 e^{4 x}+6 e^{3 x}-e^x=0$$\begin{aligned} & e^x\left(4 e^{3 x}+6 e^{2 x}-1\right)=0 \\ & e^x>0 ; g(x)=4 e^{3 x}+6 e^{2 x}-1 \\ & a(-\infty)=-1: g(\infty)=\infty\end{aligned}$
and $g(x)$ is always increasing function
$\Rightarrow g(x)$ will have exactly one real root
$\Rightarrow f^{\prime}(x)$ will have exactly one real root which will be point of minima
Also $f(0)=-4$$\begin{aligned} & f(-\infty)=-6 \\ & f(\infty)=\infty\end{aligned}$
$\Rightarrow f(x)=0$ will have exactly 1 real root.
14 Oct'24 03:58 PM
11 Oct'24 08:54 AM
11 Oct'24 08:47 AM
11 Oct'24 08:40 AM
10 Oct'24 06:18 PM
10 Oct'24 06:16 PM
10 Oct'24 06:13 PM
10 Oct'24 06:10 PM
10 Oct'24 06:07 PM
10 Oct'24 06:04 PM