A point in three dimensions is denoted by three coordinates dimension ( x , $y, z)$. The image of a point in the given plane is the reflection of the point over the given plane. We use the image of the point to find the reflection of the point which makes our calculations easy.
In this article, we will cover the concept of the Image of a Point in the Plane. This topic falls under the broader category of Three Dimensional Geometry, which is a crucial chapter in Class 12 Mathematics. This is very important not only for board exams but also for competitive exams, which even include the Joint Entrance Examination Main and other entrance exams: SRM Joint Engineering Entrance, BITSAT, WBJEE, and BCECE. A total of twenty-three questions have been asked on this topic in JEE Main from 2013 to 2023 including one in 2019, three in 2021, eight in 2022, and seven in 2023.
JEE Main 2025: Sample Papers | Mock Tests | PYQs | Study Plan 100 Days
JEE Main 2025: Maths Formulas | Study Materials
JEE Main 2025: Syllabus | Preparation Guide | High Scoring Topics
Any three points that do not all lie on the same line, there is a unique plane that passes through these points. Just as a line is determined by two points, a plane is determined by three. A plane is also determined by a line and any point that does not lie on the line.
The vector equation of a plane normal to unit vector $\hat{\mathbf{n}}$ and at a distance d from the origin is $\overrightarrow{\mathbf{r}} \cdot \hat{\mathbf{n}}=d$.
The equation $\overrightarrow{\mathbf{r}} \cdot \hat{\mathbf{n}}=d$ gives
$
\begin{array}{r}
(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(l \hat{i}+m \hat{j}+n \hat{k})=d \\
l \mathbf{x}+\mathbf{m y}+\mathbf{n z}=\mathbf{d}
\end{array}
$
This is the Cartesian equation of the plane in the normal form.
The image of a point in the given plane is the reflection of the point over the given plane. If the point lies on the plane, its image remains unchanged. If the point is above or below the plane, its image is found by reflecting it across the plane.
The image of the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1, \mathrm{z}_1\right)$ in the plane $a x+b y+c z+d=0$ is $Q\left(x_3, y_3, z_3\right)$ then coordinates of point $Q$ is given by
$
\frac{\mathrm{x}_3-\mathrm{x}_1}{\mathrm{a}}=\frac{\mathrm{y}_3-\mathrm{y}_1}{\mathrm{~b}}=\frac{\mathrm{z}_3-\mathrm{z}_1}{\mathrm{c}}=-\frac{2\left(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{cz}_1+\mathrm{d}\right)}{\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2}
$
Let point $Q\left(x_3, y_3, z_3\right)$ is the image of the point $P\left(x_1, y_1, z_1\right)$ in the plane $\pi$ $: a x+b y+c z+d=0$
Let line $P Q$ meet the plane $a x+b y+c z+d=0$ at point $R$, the direction ratio of normal to plane $\pi$ are ( $a, b, c)$, since, PQ is perpendicular to plane $\pi$.
So direction ratio of $P Q$ is $\mathrm{a}, \mathrm{b}, \mathrm{c}$
$\Rightarrow$ equation of line PQ is
$
\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}=r
$
any point on line $P Q$ may be taken as
$
\left(a r+x_1, b r+y_1, c r+z_1\right)
$
Let $Q \equiv\left({a r+x_1}, {b r+y_1}, {c r+z_1}\right)$
since, $R$ is the middle point of $P Q$
$
\begin{aligned}
& R \equiv\left(\frac{x_1+a r+x_1}{2}, \frac{y_1+b r+y_1}{2}, \frac{z_1+c r+z_1}{2}\right) \\
& \Rightarrow \quad R \equiv\left(x_1+\frac{a r}{2}, y_1+\frac{b r}{2}, z_1+\frac{c r}{2}\right)
\end{aligned}
$
Since point $R$ lies in the plane $\pi$, we get
$
\begin{array}{cc}
\Rightarrow & R \equiv\left(x_1+\frac{a r}{2}, y_1+\frac{b r}{2}, z_1+\frac{c r}{2}\right) \\
\Rightarrow & a\left(x_1+\frac{a r}{2}\right)+b\left(y_1+\frac{b r}{2}\right)+c\left(z_1+\frac{c r}{2}\right)+d=0 \\
\Rightarrow & \left(a^2+b^2+c^2\right) \frac{r}{2}=-\left(a x_1+b y_1+c z_1+d\right) \\
\Rightarrow & r=\frac{-2\left(a x_1+b y_1+c z_1+d\right)}{a^2+b^2+c^2}
\end{array}
$
In a similar method, we can also find the coordinates of point R.
Consider two points $P$ and $Q$. Let's assume a plane $\pi$ such that:
The steps to find the image of a point in a given plane:
Step 1: The equations of the normal to the given plane and the line passing through the point $P$ are written as
$
\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}
$
Step 2: The coordinates of the image Q are ( $\mathrm{x}_1+\mathrm{ar}, \mathrm{y}_1+\mathrm{br}, \mathrm{z}_1+\mathrm{cr}$ ).
Step 3: The coordinates of the mid-point R of PQ are then determined.
Step 4: The value of $r$ is obtained by substituting the coordinates of $R$ in the plane equation.
Step 5: Finally, the $r$-value is substituted in the coordinates of $Q$ to get the final result.
$
\begin{aligned}
& \frac{\alpha-2}{1}=\frac{\beta+1}{2}=\frac{\gamma-3}{-1}=\frac{-2(2-2-3)}{1^2+2^2+(-1)^2}=1 \\
& \alpha=3, \beta=1, \gamma=2
\end{aligned}
$
Distance of $\mathrm{Q}(3,1,2)$ from
$
\begin{aligned}
& 3 x+2 y+z+29=0 \\
& \mathrm{D}=\frac{|3(3)+2(1)+2+29|}{\sqrt{3^2+2^2+1^2}} \\
& =\frac{42}{\sqrt{14}}=3 \sqrt{14}
\end{aligned}
$
Hence, the answer is $3 \sqrt{14}$
Example 2: Let the food of perpendicular to the point $\mathrm{A}(4,3,1)$ on the plane $\mathrm{P}: \mathrm{x}-\mathrm{y}+2 \mathrm{z}+3=0$ be N . If $\mathrm{B}(5, \alpha, \beta), \alpha, \beta \in \mathrm{Z}{\text {is a }}$ point on a plane P such that the area of the triangle $A B N$ is $3 \sqrt{2}$, then $\alpha^2+\beta^2+\alpha \beta$ is equal to _____________. [JEE MAINS 2023]
Solution
$
\begin{aligned}
& \mathrm{AN}=\sqrt{6} \\
& 5-\alpha+2 \beta+3=0 \\
& \Rightarrow \alpha=8+2 \beta
\end{aligned}
$
N is given by
$
\begin{aligned}
& \frac{x-4}{1}=\frac{y-3}{-1}=\frac{z-1}{2}=\frac{-(4-3+2+3)}{1+1+4} \\
& \mathrm{x}=3, \mathrm{y}=4, \mathrm{z}=-1 \\
& \mathrm{~N} \\
& (3,4,-1) \\
& \mathrm{BN}=\sqrt{4+(\alpha-4)^2+(\beta+1)^2} \\
& =\sqrt{4+(2 \beta+4)^2+(\beta+1)^2} \\
& \text { Area of } \triangle \mathrm{ABN}=\frac{1}{2} \mathrm{AN} \times \mathrm{BN}=3 \sqrt{2}
\end{aligned}
$
$
\begin{aligned}
& \frac{1}{2} \times \sqrt{6} \times \mathrm{BN}=3 \sqrt{2} \\
& \mathrm{BN}=2 \sqrt{3} \\
& 4+(2 \beta+4)^2+(\beta+1)^2=12 \\
& (2 \beta+4)^2+(\beta+1)^2-8=0 \\
& 5 \beta^2+18 \beta+9=0 \\
& (5 \beta+3)(\beta+3)=0 \\
& \beta=-3 \\
& \alpha=2 \\
& \alpha^2+\beta^2+\alpha \beta=9+4-6=7
\end{aligned}
$
Hence, the answer is 7
Example 3: Let $(\alpha, \beta, \gamma)$ be the image of the point $\mathrm{P}(2,3,5)$ in the plane $2 x+y-3 z=6$ then $\alpha+\beta+\gamma$ is equal to
[JEE MAINS 2023]
Solution
$\begin{array}{llc}\frac{\alpha-2}{2}=\frac{\beta-3}{1}=\frac{\gamma-5}{-3}=-2\left(\frac{2 \times 2+3-3 \times 5-6}{2^2+1^2+1-3^2}\right)=2 & & \\ \frac{\alpha-2}{2}=2 & \beta-3=2 & \gamma-5=-6 \\ \alpha=6 & \beta=5 & \gamma=-1\end{array}$
Hence, the answer is 10
Example 4: Let two vertices of a triangle $\operatorname{ABC}$ be $(2,4,6)$ and $(0,-2,-5)$ and its centroid be $(2,1,-1)$. If the image of the third vertex in the plane $x+2 y$ $+4 z=11$ is $(\alpha, \beta, \gamma)$ then $\alpha \beta+\beta \gamma+\gamma \alpha$ is equal to
[JEE MAINS 2023]
Solution
Given the Two vertices of the Triangle
$\mathrm{A}(2,4,6)$ and $\mathrm{B}(0,-2,-5)$ and if centroid $\mathrm{G}(2,1,-1)$. Let Third vertices be $(x, y, z)$
Now $\frac{2+0+x}{3}=2, \frac{4-2+y}{3}=1, \frac{6-z+5}{3}=-1$
$
x=4, y=1, z=-1
$
Third vertices $C(4,1,-4)$ Now, Image of vertices $C(4,1,-4)$ in the given plane is $D=(\alpha, \beta, \gamma)$
Now
$
\begin{aligned}
& \frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=-2 \frac{(4+2-16-11)}{1+4+16} \\
& \frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=\frac{42}{21} \Rightarrow 2 \\
& \alpha=6, \beta=5, \gamma=4 \\
& \text { Then } \alpha \beta+\beta \gamma+\gamma \alpha \\
& \quad=(6 \times 5)+(5 \times 4)+(4 \times 6) \\
& =30+20+24 \\
& =74
\end{aligned}
$
Hence, the answer is 74
Example 5 : If the foot of the perpendicular from the point $\mathrm{A}(-1,4,3)$ on the plane $\mathrm{P}: 2 \mathrm{x}+\mathrm{my}+\mathrm{nz}=4$, is $\left(-2, \frac{7}{2}, \frac{3}{2}\right)$, then the distance of the point A from the plane P , measured parallel to a line with direction ratios $3,-1,-4$, is equal to :
[JEE MAINS 2022]
Solution:
Let B be foot of $\perp$ coordinates of $\mathrm{B}=\left(-2, \frac{7}{2}, \frac{3}{2}\right)$
Direction ratio of line AB is $\langle 2,1,3\rangle$ So
$
\mathrm{m}=1, \mathrm{n}=3
$
So equation of AC is $\frac{\mathrm{x}+1}{3}=\frac{\mathrm{y}-4}{-1}=\frac{\mathrm{z}-3}{-4}=\lambda$
So point c is $(3 \lambda-1,-1+9,-4, \lambda+3)$.but c lies on the plane, so
$
\begin{aligned}
& 6 \lambda-2-\lambda-1-12 \lambda+9=4 \\
& \Rightarrow \lambda=1 \Rightarrow \mathrm{C}(2,3,-1) \\
& \Rightarrow \quad \mathrm{AC}=\sqrt{26}
\end{aligned}
$
Hence, the answer is $\sqrt{26}$
Summary
Q1) What is an image of a point?
Answer:
The image of a point in the given plane is the reflection of the point over the given plane.
Q2) The image of the point $P\left(x_1, y_1, z_1\right)$ in the plane $a x+b y+c z+d=0$ is $Q\left(x_3, y_3, z_3\right)$ then What are the coordinates of point $Q$ ?
Answer:
The image of the point $P\left(x_1, y_1, z_1\right)$ in the plane $a x+b y+c z+d$ $=0$ is $Q\left(x_3, y_3, z_3\right)$ then coordinates of point $Q$ is given by
$
\frac{\mathrm{x}_3-\mathrm{x}_1}{\mathrm{a}}=\frac{\mathrm{y}_3-\mathrm{y}_1}{\mathrm{~b}}=\frac{\mathrm{z}_3-\mathrm{z}_1}{\mathrm{c}}=-\frac{2\left(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{cz}_1+\mathrm{d}\right)}{\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2}
$
Q3) What is the vector equation of a plane normal to a unit vector $\hat{\mathbf{n}}$ and at a distance $d$ from the origin?
Answer: The vector equation of a plane normal to unit vector $\hat{\mathbf{n}}$ and at a distance $d$ from the origin is $\overrightarrow{\mathbf{r}} \cdot \hat{\mathbf{n}}=d$.
Q4) What is the cartesian form of a plane normal to a unit vector and at a distance $d$ from the origin?
Answer: The cartesian form of a plane normal to unit vector and at a distance $d$ from the origin
$
\begin{aligned}
(x \hat{i}+y \hat{j}+z \hat{k}) \cdot & (\hat{i}+m \hat{j}+n \hat{k})=d \\
& \mathbf{l x}+\mathbf{m y}+\mathbf{n z}=\mathbf{d}
\end{aligned}
$
Q5) What is the plane?
Answer: Any three points that do not all lie on the same line, there is a unique plane that passes through these points
15 Oct'24 04:52 PM
15 Oct'24 04:39 PM
15 Oct'24 04:36 PM
15 Oct'24 04:34 PM
15 Oct'24 04:25 PM
15 Oct'24 04:18 PM
15 Oct'24 04:12 PM
15 Oct'24 02:07 PM