Inequalities are mathematical expressions showing the relationship between two values, indicating that one value is greater than, less than, or not equal to another. Understanding inequalities is crucial for solving various mathematical problems, from basic arithmetic to advanced calculus.
In this article, we will cover the concepts of the rational inequalities calculator. This concept falls under the broader category of complex numbers., a crucial Chapter in class 11 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last ten years of the JEE Main exam (from 2013 to 2023), a total of two questions have been asked on this concept, including one in 2013, and one in 2023.
JEE Main 2025: Sample Papers | Mock Tests | PYQs | Study Plan 100 Days
JEE Main 2025: Maths Formulas | Study Materials
JEE Main 2025: Syllabus | Preparation Guide | High Scoring Topics
Inequalities
Inequalities are the relationship between two expressions that are not equal to one another. Symbols denoting the inequalities are <, >, ≤, ≥, and ≠.
The process of solving inequalities is the same as of equality but instead of equality symbol inequality symbol is used throughout the process.
A few rules that are different from equality rules
We get a range of solutions while solving inequality which satisfies the inequality,
Graphically inequalities can be shown as a region belonging to one side of the line or between lines, for example, inequality $-3<x \leq 5$can be represented as below, a region belonging to -3 and 5 are the region of possible x including 5 and excluding -3.
Frequently Used Inequalities
1. $(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})<0 \Rightarrow \mathrm{x} \in(\mathrm{a}, \mathrm{b})$, where $\mathrm{a}<\mathrm{b}$
2. $(x-a)(x-b)>0 \Rightarrow x \in(-\infty, a) \cup(b, \infty)$, where $a<b$
3. $x^2 \leq a^2 \Rightarrow x \in[-a, a]$
4. $x^2 \geq a^2 \Rightarrow x \in(-\infty,-a] \cup[a, \infty)$
Rational Inequalities
We consider the algebraic inequalities of the following types
$\begin{aligned} & \frac{p(x)}{q(x)}<0, \frac{p(x)}{q(x)}>0 \\ & \frac{p(x)}{q(x)} \leq 0, \frac{p(x)}{q(x)} \geq 0\end{aligned}$
If p(x) and q(x) can be resolved in factor then we can solve these types of inequalities using a wavy curved method otherwise we use the following method to solve them.
$
\text { (1) } \begin{aligned}
& \frac{\mathrm{p}(\mathrm{x})}{\mathrm{q}(\mathrm{x})}>0 \Rightarrow \mathrm{p}(\mathrm{x}) \mathrm{q}(\mathrm{x})>0 \\
\Rightarrow & \mathrm{p}(\mathrm{x})>0, \mathrm{q}(\mathrm{x})>0 \text { or } \mathrm{p}(\mathrm{x})<0, \mathrm{q}(\mathrm{x})<0
\end{aligned}
$
$
\text { (2) } \begin{aligned}
& \frac{\mathrm{p}(\mathrm{x})}{\mathrm{q}(\mathrm{x})}<0 \Rightarrow \mathrm{p}(\mathrm{x}) \mathrm{q}(\mathrm{x})<0 \\
\Rightarrow & \mathrm{p}(\mathrm{x})>0, \mathrm{q}(\mathrm{x})<0 \text { or } \mathrm{p}(\mathrm{x})<0, \mathrm{q}(\mathrm{x})>0
\end{aligned}
$
$
\begin{aligned}
& \text { (3) } \frac{\mathrm{p}(\mathrm{x})}{\mathrm{q}(\mathrm{x})} \geq 0 \Rightarrow \mathrm{p}(\mathrm{x}) \mathrm{q}(\mathrm{x}) \geq 0 \text { and } \mathrm{q}(\mathrm{x}) \neq 0 \\
& \Rightarrow \mathrm{p}(\mathrm{x}) \geq 0, \mathrm{q}(\mathrm{x})>0 \text { or } \mathrm{p}(\mathrm{x}) \leq 0, \mathrm{q}(\mathrm{x})<0 \\
& \text { (4) } \frac{\mathrm{p}(\mathrm{x})}{\mathrm{q}(\mathrm{x})} \leq 0 \Rightarrow \mathrm{p}(\mathrm{x}) \mathrm{q}(\mathrm{x}) \leq 0 \text { and } \mathrm{q}(\mathrm{x}) \neq 0 \\
& \Rightarrow \mathrm{p}(\mathrm{x})>0, \mathrm{~g}(\mathrm{x})<0 \text { or } \mathrm{p}(\mathrm{x})<0 . \mathrm{g}(\mathrm{x}) \geq 0
\end{aligned}
$
Summary
Inequalities are a fundamental part of mathematics, providing a way to describe and solve problems involving ranges and constraints. Mastery of inequalities is essential for progressing in algebra, calculus, and applied mathematics, offering valuable tools for both theoretical and practical problem-solving.
Recommended Video :
Solved Examples Based On Rational Inequalities Calculator:
Example 1: Find all the values of a for the inequality, $\frac{x^2+a x-2}{x^2-x+1}<2$ holds true for all values of x.
$
\begin{aligned}
& \text { 1) } a \in(-\infty,-6] \cup(2, \infty) \\
& \text { 2) } a \in[-6,2 \\
& \text { 3) } a \in(-\infty,-6) \cup(2, \infty)
\end{aligned}
$
$
\text { 4) } a \in(-6,2)
$
Solution:
This equation can be written as
$\begin{aligned} & \frac{\mathrm{x}^2+\mathrm{ax}-2-2\left(\mathrm{x}^2-\mathrm{x}+1\right)}{\mathrm{x}^2-\mathrm{x}+1}<0 \\ & \Rightarrow \frac{-x^2+(a+2) x-4}{x^2-x+1}<0 \\ & \mathrm{x}^2-\mathrm{x}+1, \mathrm{D}=1-4=-3 \text { also } \mathrm{a}>0, \text { it is always positive, so it can be cross multiplied } \\ & \Rightarrow-x^2+(a+2) x-4<0 \\ & \Rightarrow x^2-(a+2) x+4>0 \\ & \Rightarrow \text { for this to be always positive discriminant must be }-\mathrm{ve} \text {, hence } \\ & (\mathrm{a}+2)^2-16<0 \\ & (a+2+4)(a+2-4)<0 \\ & (a+6)(a-2)<0 \\ & \Rightarrow a \in(-6,2)\end{aligned}$
Hence, the answer is option (2).
Example 2: For what values of 'a', the inequality $\frac{x^2+a x-2}{x^2-x+1}>-3$ holds true for all real values of x?
1) (-1,0)
2) (-1,7)
3) (-7, 0)
4) (0, 7)
Solution:
This equation can be written as
$\frac{x^2+a x-2+3\left(x^2-x+1\right)}{x^2-x+1}>0 \Rightarrow \frac{4 x^2+(a-3) x+1}{x^2-x+1}>0$ since denominator is always + ve, hence numerator must be + ve $\Rightarrow 4 x^2+(a-3) x+1>0 \Rightarrow D<0$
where, 10 is the discriminant of the polynomial equation $4 x^2+(a-3) x+1$ $1>0$ and $D=b^2-4 a$ $\Rightarrow(a-3)^2-16<0 \Rightarrow a \in(-1.7)$
Hence, the answer is the option 2.
Example 3: The last integral value $\alpha$ of $x$ , such that $\frac{x-5}{x^2+5 x-14}>0$ satisfies
$\begin{aligned} & \text { 1) } a^2+3 a-4=0 \\ & \text { 2) } a^2-5 a+4=0 \\ & \text { 3) } a^2-7 a+6=0 \\ & \text { 4) } a^2+5 a-6=0\end{aligned}$
Solution:
$\begin{aligned} & \frac{x-5}{x^2+5 x-14}>0 \\ & \frac{x-5}{(x-2)(x+7)}>0 \\ & -7<x<2 \quad \text { or } \quad x>5\end{aligned}$
$\alpha=-6$ satisfies the given condition. Also, it satisfies the equation:
$\alpha^2+5 \alpha-6=0$
Hence, the answer is the option (4).
Example 4: The interval of x for the inequality $\frac{x}{x-1} \geq 0$ is
$\begin{aligned} & \text { 1) } x \in(0,1 \\ & \text { 2) } x \in[0,1) \\ & \text { 3) } x \in(-\infty, 0] \cup(1, \infty) \\ & \text { 4) } x \in(-\infty, 0) \cup[1, \infty)\end{aligned}$
Solution
Here, critical points are $x=0,1$
The critical points are marked on the real number line. Starting with a positive sign in the rightmost interval, we denote signs of adjacent intervals by the alternating sign.
Hence, $x \in(-\infty, 0] \cup(1, \infty)$
correct option is (c)
Example 5: For $a \in C$, let $A=\{z \in C: \operatorname{Re}(a+\bar{z})>\operatorname{Im}(\bar{a}+z)\}$ and $B=\{z \in C: \operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)\}$.The among two statements:
(S1): If Re (a), Im (a) 0, then the set A contains all the real numbers
(S2): If Re (a), Im (a) 0, then the set B contains all the real numbers,
1) only (S1) is true
2) both are false
3) only (S2) is true
4) both are true
Solution:
$\begin{aligned} & \text { Let }{ }^a=\mathrm{x}_1+\mathrm{i} \mathrm{y}_1 z=\mathrm{x}+\mathrm{iy} \\ & \text { Now } \operatorname{Re}(a+z)>\operatorname{Im}(\bar{a}+z) \\ & \therefore \mathrm{x}_1+\mathrm{x}>-\mathrm{y}_1+\mathrm{y} \\ & \mathrm{x}_1=2, \mathrm{y}_1=10, \mathrm{x}=-12, \mathrm{y}=0\end{aligned}$
Given inequality is not valid for these values.
S1 is false.$\begin{aligned} & \text { Now } \operatorname{Re}(a+\bar{z})<\operatorname{lm}(\bar{a}+z) \\ & \mathrm{x}_1+\mathrm{x}<-\mathrm{y}_1+\mathrm{y} \\ & \mathrm{x}_1=-2, \mathrm{y}_1=-10, \mathrm{x}=12, \mathrm{y}=0\end{aligned}$
Given inequality is not valid for these values.
S2 is false.
Hence, the answer is the option (2).
14 Oct'24 03:58 PM
11 Oct'24 08:54 AM
11 Oct'24 08:47 AM
11 Oct'24 08:40 AM
10 Oct'24 06:18 PM
10 Oct'24 06:16 PM
10 Oct'24 06:13 PM
10 Oct'24 06:10 PM
10 Oct'24 06:07 PM
10 Oct'24 06:04 PM