Careers360 Logo
SUMMATION FORMULA

SUMMATION FORMULA

Edited By Komal Miglani | Updated on Oct 11, 2024 10:28 AM IST

Summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. If we add or subtract all the terms of a sequence we will get an expression, which is called a series. A series can be simply represented using summation, often known as sigma notation. In real life, we use Summation in mathematics and statistics to represent the sum of a series of numbers.

This Story also Contains
  1. Summation by Sigma(Σ) Operator
  2. Properties of Sigma Notation
  3. Solved Examples Based on Summation by Sigma Operator
SUMMATION FORMULA
SUMMATION FORMULA

In this article, we will cover the concept of Summation by Sigma Operator. This category falls under the broader category of Sequence and series, which is a crucial Chapter in class 11 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination(JEE Main) and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last ten years of the JEE Main Exam (from 2013 to 2023), a total of 20 questions have been asked on this concept, including one in 2029, four in 2021, two in 2022, and twelve in 2023.

Background wave

Summation by Sigma(Σ) Operator

The summation of each term of a sequence or a series can be represented in a compact form, called summation or sigma notation. This summation is represented by the Greek capital letter, Sigma (Σ).

For example,

n=1n=10n,itmeansthesumofntermswhennvariesfrom1to10n=1n=10n=1+2+3+4+5+6+7+8+9+10

If we have the formula for the rth term i.e. Ar of the series, we can put the sum of n terms of the series in the form of sigma notation as

Sn=a1+a2++an = r=1nAr

Here, Ar is called the general term of the series.

Thus, the sum of n terms of A.P. whose rth term is Ar = a+ (r-1)*d; where a is the first term and d is the common difference is given by

Sn=r=1nAr=r=1na+(r1)d

In fact, we can put the sum of any series in the sigma notation if the formula for its rth term is known.

Properties of Sigma Notation

Double subscripts: use braces to clarify


Solved Examples Based on Summation by Sigma Operator

Example 1: Let <an> be a sequence such that a1+a2++aa=n2+3n(n+1)(n+2), If 28k=1101ak=p1p2p3pm, where p1,p2Pw are the first m prime numbers, then m is equal to [JEE MAINS 2023]

Solution

an=SnSn1=n2+3n(n+1)(1+2)(n1)(n+2)n(n+1)an=4n(n+1)(1+2)28k1101ak=28k=110k(k+1)(k+2)4=74k=110(k(k+1)(k+2)(k+3)(k1)k(k+1)(k+2)=74.10.11.12.13=2.3.5.7.11.13 So m=6

Hence, the answer is 6

Example 2: Let n=0n3((2n)!)+(2n1)(n!)(n!)((2n)!)=ae+be+c, where  a, b, c Z and e=n=01n! Then a2b+c is equal to : [JEE MAINS 2023]

Solution

 Let n=0n3((2n)!)+(2n1)n!(n!)((2n)!)=n=0n3(2n)!n!(2n)!+(2n1)n!n!(2n)!=S1+S2

 Let S1=n=0n3(2n)!n!(2n)!=n=0n3n!=n=1n2(n1)!=n=1n21+1(n1)!=n=2(n+1)(n2)!+n=11(n1)!

=n=2(n2)+3(n2)!+n=11(n1)!=n=31(n3)!+3n=21(n2)!+n=11(n1)!S1=e+3e+e=5eS2=n=0(2n1)n!n!(2n)!=n=02n1(2n)!

=n=11(2n1)!n=01(2n)!=(11!+13!+15!+)(1+12!+14!+.)=1+11!12!+13!14!+15!=(111!+12!13!+14!+.)=e1

S1+S2=5e1e=ae+be+c

Compare both sides

a=5, b=1,c=0a2b+c=25+1+0=26

Hence, the answer is 26.

Example 3: Let f(x) be a function such that f(x+y)=f(x)f(y) for all x,yN if f(1)=3 and k=1nf(k)=3279 then the value of n is. [JEE MAINS 2023]

Solution

f(x+y)=f(x)f(y),x,yNf(2)=32f(3)=333[3n1]2=32793n1=1093×23n1=21863n=2187n=7

Hence, the answer is 7

Example 4: Let s1, s2, s3,,s10 respectively be the sum to 12 terms of 10 A.P. s whose first terms are 1,2,3,,10 and the common differences are 1,3,5,,19 respectively. Then i=110 si is equal to [JEE MAINS 2023]

Solution

Sk=6(2k+(11)(2k1))Sk=6(2k+22k11)Sk=144k66

110 Sk=144k=110k66×10=144×10×112660=7920660=7260

Hence, the answer is 7260

Example 5: Let [α] denote the greatest integer α . Then [1]+[2]+[3]+.+[120] is equal to _________. [JEE MAINS 2023]

Solution

S=[1]+[2]+[3]++[120][1][3]=1×3[4][8]=2×5[9][15]=3×7[100][120]=10×21 S=1×3+2×5+3×7++10×21=r=110r(2r+1)=2r=110r2+r=110r=2×10×11×216+10×112=770+55=825

Hence, the answer is (825).

Frequently Asked Questions (FAQs)

1. What is summation?

The summation of each term of a sequence or a series can be represented in a compact form, called summation or sigma notation. This summation is represented by the Greek capital letter, Sigma (Σ).

2. How do you represent the sum of the n term of AP by sigma notation?

 The sum of n terms of A.P. whose rth term is  A_r = a+ (r-1)*d; where a is the first term and  d is the common difference is given by

S_n = \sum^n_{r=1} A_r =\sum ^n_{r=1} a+ (r-1)*d

Articles

Back to top