Question : $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are two triangles such that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$. If AB = 5 cm, $\angle$B = 40° and $\angle$A = 80°, then which of the following options is true?
Option 1: DF = 5 cm, $\angle$E = 60°
Option 2: DE = 5 cm, $\angle$F = 60°
Option 3: DE = 5 cm, $\angle$D = 60°
Option 4: DE = 5 cm, $\angle$E = 60°
Correct Answer: DF = 5 cm, $\angle$E = 60°
Solution : According to the question, $\triangle$ABC $\cong$ $\triangle$FDE then, ∴ AB = FD, BC = DE and CA = EF And, $\angle$A = $\angle$F = 80º, $\angle$B = $\angle$D = 40º, $\angle$C = $\angle$E Through the Sum of angles, 180º = $\angle$A + $\angle$B + $\angle$C ⇒ 180º = 80º + 40º + $\angle$C ⇒ 180º = 120º + $\angle$C ⇒ 180º – 120º = $\angle$C ⇒ $\angle$C = 60º Since, $\angle$C = $\angle$E then $\angle$E = 60º Hence, the correct answer is 'DF = 5 cm, $\angle$E = 60º'.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In $\triangle ABC, DE \parallel BC$ in such a way that $A-D-B$ and $A-E-C$ are equal. If $ \angle A C B=40°$, then $\angle D A E+\angle ADE =$ ___________.
Question : In $\triangle A B C, \mathrm{BD} \perp \mathrm{AC}$ at $\mathrm{D}$. $\mathrm{E}$ is a point on $\mathrm{BC}$ such that $\angle B E A=x^{\circ}$. If $\angle E A C=46^{\circ}$ and $\angle E B D=60^{\circ}$, then the value of $x$ is:
Question : For a triangle ABC, D and E are two points on AB and AC such that $\mathrm{AD}=\frac{1}{6} \mathrm{AB}$, $\mathrm{AE}=\frac{1}{6} \mathrm{AC}$. If BC = 22 cm, then DE is _______. (Consider up to two decimals)
Question : I is the incentre of $\triangle \mathrm{ABC}$ of $\angle \mathrm{A}=46°$, then $\angle \mathrm{BIC}=$?
Question : DEF is an isosceles triangle such that DE = DF = 60 cm and EF = 96 cm. DG is a median to base EF. What is the length of DG?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile