6 Views

Question : Directions: Select the set in which the numbers are related in the same way as the numbers of the following sets.
(NOTE: Operations should be performed on the whole numbers, without breaking down the numbers into their constituent digits. E.g. 13 – operations on 13 such as adding/subtracting/multiplying etc. to 13 can be performed. Breaking down 13 into 1 and 3 and then performing mathematical operations on 1 and 3 is NOT allowed.)
$\left[\left(\frac{7}{9}\right),\left(\frac{31}{39}\right)\right];\left[\left(\frac{3}{5}\right),\left(\frac{15}{23}\right)\right]$

Option 1: $\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]$

Option 2: $\left[\left(\frac{9}{13}\right),\left(\frac{37}{55}\right)\right]$

Option 3: $\left[\left(\frac{9}{11}\right),\left(\frac{32}{37}\right)\right]$

Option 4: $\left[\left(\frac{17}{19}\right),\left(\frac{36}{77}\right)\right]$


Team Careers360 24th Jan, 2024
Answer (1)
Team Careers360 25th Jan, 2024

Correct Answer: $\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]$


Solution : Given:
$\left[\left(\frac{7}{9}\right),\left(\frac{31}{39}\right)\right];\left[\left(\frac{3}{5}\right),\left(\frac{15}{23}\right)\right]$

In the given sets, multiply both the numerator and the denominator by 4, and then add 3.
$\left[\left(\frac{7}{9}\right),\left(\frac{31}{39}\right)\right]$→$\left[\left(\frac{(7 × 4) + 3}{(9 × 4) + 3}\right) = (\frac{28 + 3}{36 + 3}) =\left(\frac{31}{39}\right)\right]$
$\left[\left(\frac{3}{5}\right),\left(\frac{15}{23}\right)\right]$→$\left[\left(\frac{(3 × 4) + 3}{(5 × 4) + 3}\right) = (\frac{12 + 3}{20 + 3}) =\left(\frac{15}{23}\right)\right]$
Let's check the options –
First option: $\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]$→$\left[\left(\frac{(11 × 4) + 3}{(13 × 4) + 3}\right) = (\frac{44 + 3}{52 + 3}) =\left(\frac{47}{55}\right)\right]$
Second option: $\left[\left(\frac{9}{13}\right),\left(\frac{37}{55}\right)\right]$→$\left[\left(\frac{(9 × 4) + 3}{(13 × 4) + 3}\right) = (\frac{36 + 3}{52 + 3}) =\left(\frac{39}{55})\neq(\frac{37}{55}\right)\right]$
Third option:
$\left[\left(\frac{9}{11}\right),\left(\frac{32}{37}\right)\right]$ →$\left[\left(\frac{(9 × 4) + 3}{(11 × 4) + 3}\right) = (\frac{36 + 3}{44 + 3}) =\left(\frac{39}{47})\neq(\frac{32}{37}\right)\right]$
Fourth option:
$\left[\left(\frac{17}{19}\right),\left(\frac{36}{77}\right)\right]$ →$\left[\left(\frac{(17 × 4) + 3}{(19 × 4) + 3}\right) = (\frac{68 + 3}{76 + 3}) =\left(\frac{71}{79})\neq(\frac{36}{77}\right)\right]$

So, only the first option follows the same pattern as followed by the given set of numbers. Hence, the first option is correct.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books