Question : Find the value of $\sin (50^{\circ} + A) – \cos (40^{\circ} - A)$.
Option 1: 2
Option 2: 0
Option 3: –1
Option 4: 1
Correct Answer: 0
Solution : We know, $\sin (90^{\circ}-A)=\cos A$ $\sin (50^{\circ} + A) – \cos (40^{\circ} – A)$ $=\sin (50^{\circ} + A) – \cos (90^{\circ}–(50^{\circ} + A))$ $=\sin (50^{\circ} + A) – \sin (50^{\circ} + A)$ $=0$ Hence, the correct answer is 0.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Find the value of $\frac{\cos 65^{\circ}}{\sin 25^{\circ}}+\frac{5 \sin 19^{\circ}}{\cos 71^{\circ}}-\frac{3 \cos 28^{\circ}}{\sin 62^{\circ}}$.
Question : Find the value of $\frac{\cos 37^{\circ}}{\sin 53^{\circ}}-\cos 47^{\circ} \operatorname{cosec} 43^{\circ}$.
Question : Find the value of $\frac{\sin ^2 39^{\circ}+\sin ^2\left(90^{\circ}–39^{\circ}\right)}{\cos ^2 35^{\circ}+\cos ^2\left(90^{\circ}–35^{\circ}\right)}+3 \tan 25^{\circ} \tan 75^{\circ}$:
Question : The value of $\frac{\sin ^2 52^{\circ}+2+\sin ^2 38^{\circ}}{4 \cos ^2 43^{\circ}-5+4 \cos ^2 47^{\circ}}$ is:
Question : If $\sin A+\sin ^2 A=1$, then the value of $\cos ^4 A+\cos ^6 A$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile