Question : I is the incentre of $\triangle \mathrm{ABC}$ of $\angle \mathrm{A}=46°$, then $\angle \mathrm{BIC}=$?
Option 1: 93°
Option 2: 113°
Option 3: 124°
Option 4: 134°
Correct Answer: 113°
Solution : In $\triangle$BIC Angle at incentre = 90° + $\frac{1}{2}$ × vertex angle ⇒ $\angle$BIC = 90° + $\frac{46°}{2}$ = 90° + 23° = 113° Hence, the correct answer is 113°.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=68^{\circ}$. If I is the incentre of the triangle, then the measure of $\angle B I C$ is:
Question : $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are two triangles such that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$. If AB = 5 cm, $\angle$B = 40° and $\angle$A = 80°, then which of the following options is true?
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=54^{\circ}$. If I is the incentre of the triangle, then the measure of $\angle \mathrm{BIC}$ is:
Question : 'I' is the incentre of $\triangle$ABC. If $\angle$BIC = 108$^\circ$, then $\angle$A = ?
Question : In $\triangle A B C, \mathrm{BD} \perp \mathrm{AC}$ at $\mathrm{D}$. $\mathrm{E}$ is a point on $\mathrm{BC}$ such that $\angle B E A=x^{\circ}$. If $\angle E A C=46^{\circ}$ and $\angle E B D=60^{\circ}$, then the value of $x$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile