Question : If $\alpha$ and $\beta$ are the roots of equation $x^{2}-2x+4=0$, then what is the equation whose roots are $\frac{\alpha ^{3}}{\beta ^{2}}$ and $\frac{\beta ^{3}}{\alpha ^{2}}?$
Option 1: $x^{2}-4x+8=0$
Option 2: $x^{2}-32x+4=0$
Option 3: $x^{2}-2x+4=0$
Option 4: $x^{2}-16x+4=0$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $x^{2}-2x+4=0$
Solution : Given: $\alpha$ and $\beta$ are roots of the equation $x^{2}-2x+4=0$ ⇒ $\alpha+\beta=2$ and $\alpha\beta=4$ Now we need to find the equation whose roots are $\frac{\alpha ^{3}}{\beta ^{2}}$ and $\frac{\beta ^{3}}{\alpha ^{2}}$. $\frac{\alpha^{3}}{\beta^{2}}+\frac{\beta^{3}}{\alpha^{2}}$ = $\frac{\alpha ^{5}+\beta^{5}}{\alpha^{2}\beta ^{2}}$ = $\frac{(\alpha ^{2}+\beta^{2}) \times(\alpha ^{3}+\beta^{3})-(\alpha ^{2}\beta ^{3}+\alpha ^{3}\beta ^{2})}{(\alpha\beta)^{2}}$ = $\frac{[((\alpha+\beta)^{2}-2\alpha\beta)\times((\alpha+\beta)^{3}-3\alpha\beta\times(\alpha+\beta))-\alpha^{2}\beta ^{2}\times(\alpha+\beta)]}{(\alpha\beta)^{2}}$ = $\frac{[((2)^{2}-2\times 4)\times((2)^{3}-3\times 4\times 2)-4^{2}\times(2)]}{(4)^{2}}$ = $\frac{((-4)\times(-16)-32)}{16}$ = $\frac{(64-32)}{16}$ = $\frac{32}{16}$ = $2$ Also, $\frac{\alpha^{3}}{\beta^{2}}×\frac{\beta^{3}}{\alpha^{2}}=\alpha\beta=4$ So, the required equation is $x^{2}-(\frac{\alpha^{3}}{\beta^{2}}+\frac{\beta^{3}}{\alpha^{2}})x+(\frac{\alpha^{3}}{\beta^{2}}×\frac{\beta^{3}}{\alpha^{2}})=0$ ⇒ $x^2-2x+4=0$ Hence, the correct answer is $x^2-2x+4=0$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\alpha$ and $\beta$ are the roots of equation $x^{2}-x+1=0$, then which equation will have roots $\alpha ^{3}$ and $\beta ^{3}?$
Question : If $\alpha, \beta$ are the roots of $6 x^2+13 x+7=0$, then the equation whose roots are $\alpha^2, \beta^2$ is:
Question : What is $\sin \alpha - \sin\beta$?
Question : If $2x-\frac{2}{x}=1(x \neq 0)$, then the the value of $(x^3-\frac{1}{x^3})$ is:
Question : If $2x-\frac{1}{2x}=5,x\neq0$, then the value of $(x^2+\frac{1}{16x^2}-2)$is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile