Question : If $a^2+b^2+c^2=160$ and $a+b+c=16$, find $a b+b c+c a$.
Option 1: 96
Option 2: 84
Option 3: 48
Option 4: 42
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 48
Solution : Given, $a^2+b^2+c^2=160$ and $a+b+c=16$ We know, $(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)$ ⇒ $16^2 = 160 + 2(a b+b c+c a)$ ⇒ $2(a b+b c+c a)=256-160$ ⇒ $ab+bc+ca=48$ Hence, the correct answer is 48.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $(a+b+c)=17$ and $\left(a^2+b^2+c^2\right)=101$, then find the value of $(a-b)^2+(b-c)^2+(c-a)^2$.
Question : If $9 a+9 b+9 c=81$ and $4 a b+4 b c+4 c a=160$, then what is the value of $6 a^2+6 b^2+6 c^2$?
Question : In a triangle ABC; 8$\angle$A = 6$\angle$B = 3$\angle$C. What are the degree measures of $\angle$ A, $\angle$ B, and $\angle$C?
Question : Simplify: $(2 a-3 b-c)^2-(a+2 b+c)^2$
Question : If $a+b+c=5$ and $a^2+b^2+c^2=15$, then find the value of $a^3+b^3+c^3-3 a b c-27$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile