Question : If $(a+b+c)=14$ and $\left(a^3+b^3+c^3-3 a b c\right)=98$, find the value of $(ab+bc+ca)$.
Option 1: 60
Option 2: 64
Option 3: 65
Option 4: 63
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 63
Solution : Given that: $a + b + c = 14$ and $a^3 + b^3 + c^3 - 3abc = 98$ We have to find the value of $ab +bc +ca$ We know that, $a^3 + b^3+ c^3 - 3abc = 98$ ⇒ $(a^2+ b^2+ c^2 - ab - bc - ca)(a + b + c) = 98$ ⇒ $(a^2 + b^2 + c^2 - ab - bc - ca)(14) = 98$ ⇒ $(a^2 +b^2 +c^2 - ab - bc - ca)$ = $\frac{98}{14}$ ⇒ $(a^2 + b^2 + c^2) = 7 + ab + bc + ca$ Now, $(a + b + c) ^2 = a^2 + b^2 + c^2+ 2(ab + bc + ca)$ ⇒ $14^2 = 7 + ab + bc + ca + 2(ab + bc + ca)$ ⇒ $196 = 7 + 3(ab + bc + ca)$ ⇒ $196 - 7 = 3(ab + bc + ca)$ ⇒ $189 = 3(ab + bc + ca)$ $\therefore$ $ab + bc + ca = 63$ Hence, the correct answer is 63.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(a + b + c) = 13$ and $(ab + bc + ca) = 54$, find the value of $\left(a^2+b^2+c^2\right)$.
Question : If $(a+b+c)=14$ and $\left(a^3+b^3+c^3-3abc\right)=98$, find the value of $\left(a^2+b^2+c^2\right)$.
Question : If $\frac{a^{2} - bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$, then the value of $\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}$ is:
Question : If $(a+b+c)=19$ and $\left(a^2+b^2+c^2\right)=155$, find the value of $(a-b)^2+(b-c)^2+(c-a)^2$
Question : If $a^2+b^2+c^2=14$ and $a+b+c=6$, then the value of $(ab+bc+ca)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile