Question : If $\frac{\cos \alpha}{\sin \beta} = 10$ and $\frac{\cos \alpha}{\cos \beta} = 11$, the value of $\cos ^2 \beta$ is:
Option 1: $\frac{121}{132}$
Option 2: $\frac{100}{221}$
Option 3: $\frac{88}{108}$
Option 4: $\frac{221}{121}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{100}{221}$
Solution : Given: $\frac{\cos \alpha}{\sin \beta} = 10$ and $\frac{\cos \alpha}{\cos \beta} = 11$ ⇒ ${\cos \alpha} = 10\ {\sin \beta}$ and ${\cos \alpha} = 11\ {\cos \beta}$ ⇒ $10\ {\sin \beta} = 11\ {\cos \beta}$ ⇒ $\frac{\sin \beta}{\cos \beta} = \frac{11}{10}$ ⇒ ${\tan \beta} = \frac{11}{10}$ We know, $\sec^2 \beta-\tan^2\beta=1$ ⇒ $\sec^2 \beta-(\frac{11}{10})^2=1$ ⇒ $\sec^2 \beta=1+\frac{121}{100}$ ⇒ $\sec^2 \beta=\frac{221}{100}$ $\therefore {\cos^2\beta} = \frac{100}{221}$ Hence, the correct answer is $\frac{100}{221}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What is $\sin \alpha - \sin\beta$?
Question : If $\alpha+\beta=90^{\circ}$ and $\alpha=2 \beta$, then the value of $3 \cos ^2 \alpha-2 \sin ^2 \beta$ is equal to:
Question : If $\frac{\cos \beta}{\sec \alpha}=15$ and $\frac{\sin \beta}{\sec \alpha}=16$, the value of $\sin ^2 \beta$ is:
Question : If $\frac{\cos\alpha}{\cos\beta}= m$ and $\frac{\cos\alpha}{\sin\beta}= n$, then the value of $(m^{2}+n^{2})\cos^{2}\beta$ is:
Question : Simplify the following. $\frac{\sin^3 \alpha+\cos^3 \alpha}{\sin \alpha+\cos \alpha}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile