Question : If $\frac{\cos \beta}{\sec \alpha}=15$ and $\frac{\sin \beta}{\sec \alpha}=16$, the value of $\sin ^2 \beta$ is:
Option 1: $\frac{256}{481}$
Option 2: $-\frac{256}{481}$
Option 3: $\frac{481}{256}$
Option 4: $-\frac{481}{256}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{256}{481}$
Solution : Given: $\frac{\cos \beta}{\sec \alpha}=15$ and $\frac{\sin \beta}{\sec \alpha}=16$ $\frac{\cos \beta}{\sec \alpha}=15$ ⇒ $\frac{\cos \beta}{15}=\sec \alpha$......................(equation 1) Again, $\frac{\sin \beta}{\sec \alpha}=16$ ⇒ $\frac{\sin \beta}{16}=\sec \alpha$........................(equation 2) From equations 1 and 2, we get: $\frac{\cos \beta}{15}=\frac{\sin \beta}{16}$ ⇒ $\frac{\cos \beta}{\sin \beta}=\frac{15}{16}$ ⇒ $\cot\beta = \frac{15}{16}$ Since $\cot\beta = \frac{\text{Base}}{\text{Perpendicular}}$ $\text{Hypotenuse}=\sqrt{\text{Perpendicular}^2+\text{Base}^2} = \sqrt{16^2+15^2}=\sqrt{481}$ $\therefore \sin ^2 \beta=(\frac{\text{Perpendicular}}{\text{Hypotenuse}})^2=(\frac{16}{\sqrt{481}})^2$ = $\frac{256}{481}$ Hence, the correct answer is $\frac{256}{481}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : What is $\sin \alpha - \sin\beta$?
Question : If $\frac{\cos \alpha}{\sin \beta} = 10$ and $\frac{\cos \alpha}{\cos \beta} = 11$, the value of $\cos ^2 \beta$ is:
Question : If $\alpha+\beta=90^{\circ}$ and $\alpha=2 \beta$, then the value of $3 \cos ^2 \alpha-2 \sin ^2 \beta$ is equal to:
Question : Simplify the following. $\frac{\sin^3 \alpha+\cos^3 \alpha}{\sin \alpha+\cos \alpha}$
Question : If $\frac{\cos\alpha}{\cos\beta}= m$ and $\frac{\cos\alpha}{\sin\beta}= n$, then the value of $(m^{2}+n^{2})\cos^{2}\beta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile