Question : If $a = 101, b = 102,$ and $c =103$, then $a^{2} + b^{2} + c^{2} -ab - bc - ca$ =_____
Option 1: 2
Option 2: 4
Option 3: 3
Option 4: 6
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 3
Solution : $(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2(ab + bc + ca)$ $⇒(a + b + c)^{2} -3(ab + bc + ca) = a^{2} + b^{2} + c^{2} + 2(ab + bc + ca) –3(ab + bc + ca)$ Putting the values of $a, b,$ and $c$, we get, $⇒(101 + 102 + 103)^{2}-3(101 \times 102 + 102 \times 103 + 103\times 101) = a^{2} + b^{2} + c^{2} - (ab + bc + ca)$ $⇒a^{2} + b^{2} + c^{2} -ab - bc - ca = 306^2 -3(10302 + 10506 + 10403)$ $⇒a^{2} + b^{2} + c^{2} -ab - bc - ca = 93636 -3(31211)$ $⇒a^{2} + b^{2} + c^{2} -ab - bc - ca = 93636 -93633$ $\therefore a^{2} + b^{2} + c^{2} -ab - bc - ca= 3$ Hence, the correct answer is 3.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $a+b+c$ = 6 and $ab+bc+ca$ = 11, then the value of $bc(b+c)+ca(c+a)+ab(a+b)+3abc$ is:
Question : If $\frac{a^{2} - bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$, then the value of $\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}$ is:
Question : If $\frac{x-a^{2}}{b+c}+\frac{x-b^{2}}{c+a}+\frac{x-c^{2}}{a+b} = 4(a+b+c)$, then $x$ is equal to:
Question : If $a^2+b^2+c^2=14$ and $a+b+c=6$, then the value of $(ab+bc+ca)$ is:
Question : If $a+b+c=5, a^3+b^3+c^3=85$, and $abc=25$, then find the value of $a^2+b^2+c^2-a b- bc - ca$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile