Question : If $a+b+c=15$ and $a b+b c+c a=22$, then find the value of $a^2+b^2+c^2$.
Option 1: 131
Option 2: 141
Option 3: 161
Option 4: 181
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 181
Solution : Given: $a+b+c=15$ and $a b+b c+c a=22$ $(a+b+c)^2 = a^2+b^2+c^2+2(ab+bc+ca)$ ⇒ $(15)^2 = a^2+b^2+c^2+2(22)$ ⇒ $225 = a^2+b^2+c^2+44$ ⇒ $a^2+b^2+c^2 = 181$ Hence, the correct answer is 181.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $a+b+c=5$ and $a^2+b^2+c^2=15$, then find the value of $a^3+b^3+c^3-3 a b c-27$.
Question : If $a^3+3 a^2+3 a=63$, then the value of $a^2+2 a$ is:
Question : If $(a+b+c)=17$ and $\left(a^2+b^2+c^2\right)=101$, then find the value of $(a-b)^2+(b-c)^2+(c-a)^2$.
Question : If $9 a+9 b+9 c=81$ and $4 a b+4 b c+4 c a=160$, then what is the value of $6 a^2+6 b^2+6 c^2$?
Question : If $a^2+b^2+c^2=2(a-b-c)-3$, then the value of $(a+b+c)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile