Question : If $\alpha +\beta =90^\circ$ and $\alpha :\beta =2:1,$ then the ratio of $\cos \alpha$ to $\cos \beta$ is:
Option 1: $1:\sqrt{3}$
Option 2: $1:3$
Option 3: $1:\sqrt{2}$
Option 4: $1:2$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1:\sqrt{3}$
Solution : Given: $\alpha +\beta =90^\circ$ and $\alpha :\beta =2:1,$ Hence, $\frac{\alpha}{\beta} = \frac{2}{1}$ $\alpha = 2\beta$ Now, putting the values of $\alpha$, we get $\alpha +\beta =90^\circ$ ⇒ $2\beta+\beta =90^\circ$ ⇒ $3\beta =90^\circ$ ⇒ $\beta =30^\circ$ Putting the values of $\beta$, we get $\alpha +\beta =90^\circ$ ⇒ $\alpha + 30^\circ =90^\circ$ ⇒ $\alpha =60^\circ$ Thus, the ratio of $\cos \alpha$ to $\cos \beta$ = $\cos 60^\circ$: $\cos 30^\circ$ = $\frac{1}{2}:\frac{\sqrt{3}}{2}$ = $1:\sqrt{3}$ Hence, the correct answer is $1:\sqrt3$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\alpha+\beta=90^{\circ}$ and $\alpha=2 \beta$, then the value of $3 \cos ^2 \alpha-2 \sin ^2 \beta$ is equal to:
Question : If $\tan (\alpha+\beta)=\sqrt{3}, \tan (\alpha-\beta)=1$ where $(\alpha+\beta)$ and $(\alpha-\beta)$ are acute angles, then what is $\tan$ $(6 \alpha) ?$
Question : What is $\sin \alpha - \sin\beta$?
Question : If $0\leq\theta\leq 90^{\circ}$ and $4\cos^{2}\theta-4\sqrt{3}\cos\theta+3=0$, then the value of $\theta$ is:
Question : If $\frac{\cos\alpha}{\cos\beta}= m$ and $\frac{\cos\alpha}{\sin\beta}= n$, then the value of $(m^{2}+n^{2})\cos^{2}\beta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile