Question : If $0^{\circ}< \theta< 90^{\circ}$ and $\operatorname{cosec \theta} =\cot^{2}\theta$, then the value of expression $\operatorname{cosec^{4}\theta}–\operatorname{2cosec^{2}\theta}-\cot^{2}\theta$ is equal to:
Option 1: $2$
Option 2: $0$
Option 3: $1$
Option 4: $3$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : $\operatorname{cosec \theta} =\cot^{2}\theta$ $⇒\operatorname{cosec \theta} = \operatorname{cosec^2 \theta} -1$ Squaring both sides, we get, $⇒\operatorname{cosec^2 \theta} =\operatorname{cosec^4 \theta} -2\operatorname{cosec^2 \theta} +1$ $⇒\operatorname{cosec^4 \theta} -3\operatorname{cosec^2 \theta} +1=0$ $⇒\operatorname{cosec^4 \theta} -3\operatorname{cosec^2 \theta} +\operatorname{cosec^2 \theta} -\cot^2\theta =0$ [$\because1 = \operatorname{cosec^2 \theta}-\cot^2\theta$] $⇒\operatorname{cosec^4 \theta} -2\operatorname{cosec^2 \theta} -\cot^2\theta =0$ Hence, the correct answer is $0$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Find the value of $\cot ^2B- \operatorname{cosec}^2B$ for $ 0<B<90^{\circ}.$
Question : If $\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=1$, then what is the value of $\theta$?
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Question : If $0^{\circ}< A< 90^{\circ}$, then the value of $\tan ^{2}A+\cot^{2}A-\sec^{2}A \operatorname{cosec}^{2}A$ is:
Question : The value of the expression
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile