Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Option 1: –64
Option 2: 4
Option 3: 0
Option 4: –4
Correct Answer: –4
Solution :
Given: $x + y + z = 17,xy + yz + zx = 111$ and $xyz = 171$
$(x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx)$
$⇒17^2 = x^2 + y^2 + z^2 + 2 × 111$
$⇒x^2 + y^2 + z^2 = 289 - 222$
$⇒x^2 + y^2 + z^2 = 67$
Using algebraic identity
$x^3 + y^3 + z^3 - 3xyz = (x + y + z)[x^2 + y^2 + z^2 – (xy + yz + zx)]$
$⇒x^3 + y^3 + z^3 - 3 × 171 = 17 × (67 - 111)$
$⇒x^3 + y^3 + z^3 - 513 = -748$
$⇒x^3 + y^3 + z^3 = -748 + 513$
$⇒x^3 + y^3 + z^3 = -235$
So, $\sqrt[3]{(x^3+y^3+z^3+xyz)} = \sqrt[3]{(-235+171)}=-4$
Hence, the correct answer is –4.
Related Questions
Know More about
Staff Selection Commission Sub Inspector ...
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Get Updates BrochureYour Staff Selection Commission Sub Inspector Exam brochure has been successfully mailed to your registered email id “”.