Question : If $\sin(3\alpha -\beta )=1$ and $\cos(2\alpha+\beta)=\frac{1}{2}$, then the value of $\tan \alpha$ is:
Option 1: $0$
Option 2: $\frac{1}{\sqrt{3}}$
Option 3: $1$
Option 4: $\sqrt{3}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{\sqrt{3}}$
Solution : We have, $\sin(3\alpha -\beta )=1$ ⇒ $\sin(3\alpha -\beta )=\sin 90^{\circ}$ ⇒ $(3\alpha -\beta )=90^{\circ}$ ⇒ $\beta=3\alpha-90^{\circ}$..............(i) Also, $\cos(2\alpha+\beta)=\frac{1}{2}$ ⇒ $\cos(2\alpha+\beta)=\cos 60^{\circ}$ ⇒ $(2\alpha+\beta)=60^{\circ}$ ⇒ $\beta=60^{\circ}-2\alpha$ ..............(ii) From equations (i) and (ii), we get, $3\alpha-90^{\circ}=60^{\circ}-2\alpha$ ⇒ $3\alpha+2\alpha=60^{\circ}+90^{\circ}$ ⇒ $5\alpha=150^{\circ}$ $\therefore \alpha=30^{\circ}$ $\therefore\tan\alpha = \tan 30^{\circ} = \frac{1}{\sqrt3}$ Hence, the correct answer is $\frac{1}{\sqrt3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\cos^{2}\alpha-\sin^{2}\alpha=\tan^{2}\beta$, then the value of $\cos^{2}\beta-\sin^{2}\beta$ is:
Question : If $\alpha$ and $\beta$ are positive acute angles, $\sin (4\alpha -\beta )=1$ and $\cos (2\alpha +\beta)=\frac{1}{2}$, then the value of $\sin (\alpha +2\beta)$ is:
Question : If $\tan \alpha=\frac{1}{\sqrt{3}}$ and $\tan \beta=\sqrt{3}$ then what is the value of $\cos (\alpha+\beta)$?
Question : If $\sin \alpha=\frac12$ and $\sin \beta=\frac12$, then what is the value of $\cos (\alpha+\beta)$? $(0°<\alpha, \beta<90° )$
Question : If $\cos 5 \alpha=\sin \alpha$ and $5 \alpha<90^{\circ}$, then the value of $\tan 2 \alpha$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile