Question : If $\alpha+\beta=90^{\circ}$ and $\alpha=2 \beta$, then the value of $3 \cos ^2 \alpha-2 \sin ^2 \beta$ is equal to:
Option 1: $\frac{3}{4}$
Option 2: $\frac{3}{2}$
Option 3: $\frac{1}{4}$
Option 4: $\frac{4}{3}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{4}$
Solution : Given that $\alpha + \beta = 90^\circ$ and $\alpha = 2\beta$, Substitute $\alpha$ in terms of $\beta$ into the first equation, $⇒2\beta + \beta = 90^\circ$ $⇒\beta = 30^\circ$ $\therefore \alpha = 60^\circ$ Substitute these values into the expression $3\cos^2\alpha - 2\sin^2\beta$: $3\cos^2(60^\circ) - 2\sin^2(30^\circ) = 3\left(\frac{1}{2}\right)^2 - 2\left(\frac{1}{2}\right)^2 = 3\left(\frac{1}{4}\right) - 2\left(\frac{1}{4}\right) = \frac{1}{4}$ Hence, the correct answer is $ \frac{1}{4}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What is $\sin \alpha - \sin\beta$?
Question : If $\alpha +\beta =90^\circ$ and $\alpha :\beta =2:1,$ then the ratio of $\cos \alpha$ to $\cos \beta$ is:
Question : If $\frac{\cos \alpha}{\sin \beta} = 10$ and $\frac{\cos \alpha}{\cos \beta} = 11$, the value of $\cos ^2 \beta$ is:
Question : If $\frac{\cos\alpha}{\cos\beta}= m$ and $\frac{\cos\alpha}{\sin\beta}= n$, then the value of $(m^{2}+n^{2})\cos^{2}\beta$ is:
Question : If $\frac{\cos \beta}{\sec \alpha}=15$ and $\frac{\sin \beta}{\sec \alpha}=16$, the value of $\sin ^2 \beta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile