Question : If $x+y+z=0$ and $x^2+y^2+z^2=40$, then what is the value of $x y+y z+z x?$
Option 1: –20
Option 2: 5
Option 3: –5
Option 4: –10
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: –20
Solution : Given: $x + y + z = 0$ and $x^2+y^2+z^2=40$ ⇒ $(x+ y + z)^2= 0$ ⇒ $x^2 + y^2 + z^2 + 2(xy + yz + zx) = 0$ ⇒ $40 + 2(xy + yz + zx) = 0$ ⇒ $2(xy + yz + zx) = - 40$ ⇒ $xy + yz + zx = - 20$ Hence, the correct answer is –20.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $\frac{(x+y)}{z}=2$, then what is the value of $[\frac{y}{(y-z)}+\frac{x}{(x-z)}]?$
Question : If $(x-5)^2+(y-2)^2+(z-9)^2=0$, then value of $(x+y-z)$ is:
Question : What is the simplified value of $\frac{(x+y+z)(x y+y z+z x)–x y z}{(x+y)(y+z)(z+x)}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile