Question : If $\tan \alpha=\frac{1}{\sqrt{3}}$ and $\tan \beta=\sqrt{3}$ then what is the value of $\cos (\alpha+\beta)$?
Option 1: 0.2
Option 2: 0
Option 3: 0.5
Option 4: 1
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : $\tan \alpha=\frac{1}{\sqrt{3}}$ ⇒ $\alpha = 30^{\circ}$ $\tan \beta=\sqrt{3}$ ⇒ $ \beta = 60^{\circ}$ So, $\cos (\alpha+\beta)$ = $\cos (30^{\circ}+60^{\circ})$ = $\cos (90^{\circ}) = 0$ Hence, the correct answer is 0.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin(3\alpha -\beta )=1$ and $\cos(2\alpha+\beta)=\frac{1}{2}$, then the value of $\tan \alpha$ is:
Question : If $\alpha$ and $\beta$ are positive acute angles, $\sin (4\alpha -\beta )=1$ and $\cos (2\alpha +\beta)=\frac{1}{2}$, then the value of $\sin (\alpha +2\beta)$ is:
Question : If $\cos^{2}\alpha-\sin^{2}\alpha=\tan^{2}\beta$, then the value of $\cos^{2}\beta-\sin^{2}\beta$ is:
Question : If $\sin \alpha=\frac12$ and $\sin \beta=\frac12$, then what is the value of $\cos (\alpha+\beta)$? $(0°<\alpha, \beta<90° )$
Question : If $\cos 5 \alpha=\sin \alpha$ and $5 \alpha<90^{\circ}$, then the value of $\tan 2 \alpha$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile