Question : If $(x+y+z)=12$, $xy+yz+zx=44$, and $xyz=48$, then what is the value of $x^{3}+y^{3}+z^{3}$?
Option 1: 104
Option 2: 144
Option 3: 196
Option 4: 288
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 288
Solution : Given: $(x+y+z)=12$ $xy+yz+zx=44$ $xyz=48$ We know that $x^{3}+y^{3}+z^{3}=(x+y+z)[(x+y+z)^{2}–3(xy+yz+zx)]+3xyz$ Putting the given values, ⇒ $x^{3}+y^{3}+z^{3}=12×[(12)^{2}–3(44)]+3×48$ ⇒ $x^{3}+y^{3}+z^{3}=12×(144–132)+144$ ⇒ $x^{3}+y^{3}+z^{3}=288$ Hence, the correct answer is 288.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : $x,y,$ and $z$ are real numbers. If $x^3+y^3+z^3 = 13, x+y+z = 1$ and $xyz=1$, then what is the value of $xy+yz+zx$?
Question : If $x+y+z = 22$ and $xy+yz+zx = 35$, then what is the value of $\small (x-y)^{2}+(y-z)^{2}+(z-x)^{2}$?
Question : If $\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=3$, then what is the value of $(x+y+z)^3$?
Question : If $xy+yz+zx=1$ , then the value of $\frac{1\:+\:y^2}{(x\:+\:y)(y\:+\:z)}$ is:
Question : If $x+y+z=0$, then the value of $\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile